Metamath Proof Explorer


Theorem albidv

Description: Formula-building rule for universal quantifier (deduction form). See also albidh and albid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1 φ ψ χ
Assertion albidv φ x ψ x χ

Proof

Step Hyp Ref Expression
1 albidv.1 φ ψ χ
2 ax-5 φ x φ
3 2 1 albidh φ x ψ x χ