Metamath Proof Explorer


Theorem albiim

Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion albiim x φ ψ x φ ψ x ψ φ

Proof

Step Hyp Ref Expression
1 dfbi2 φ ψ φ ψ ψ φ
2 1 albii x φ ψ x φ ψ ψ φ
3 19.26 x φ ψ ψ φ x φ ψ x ψ φ
4 2 3 bitri x φ ψ x φ ψ x ψ φ