Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-7 (Equality)
alcomiwOLD
Metamath Proof Explorer
Description: Obsolete version of alcomiw as of 28-Dec-2023. (Contributed by NM , 10-Apr-2017) (Proof shortened by Wolf Lammen , 12-Jul-2022)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypothesis
alcomiw.1
⊢ y = z → φ ↔ ψ
Assertion
alcomiwOLD
⊢ ∀ x ∀ y φ → ∀ y ∀ x φ
Proof
Step
Hyp
Ref
Expression
1
alcomiw.1
⊢ y = z → φ ↔ ψ
2
1
biimpd
⊢ y = z → φ → ψ
3
2
cbvalivw
⊢ ∀ y φ → ∀ z ψ
4
3
alimi
⊢ ∀ x ∀ y φ → ∀ x ∀ z ψ
5
ax-5
⊢ ∀ x ∀ z ψ → ∀ y ∀ x ∀ z ψ
6
1
biimprd
⊢ y = z → ψ → φ
7
6
equcoms
⊢ z = y → ψ → φ
8
7
spimvw
⊢ ∀ z ψ → φ
9
8
2alimi
⊢ ∀ y ∀ x ∀ z ψ → ∀ y ∀ x φ
10
4 5 9
3syl
⊢ ∀ x ∀ y φ → ∀ y ∀ x φ