Metamath Proof Explorer
Description: Weak version of alcom and biconditional form of alcomiw . Uses only
Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024)
|
|
Ref |
Expression |
|
Hypotheses |
alcomw.1 |
|
|
|
alcomw.2 |
|
|
Assertion |
alcomw |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alcomw.1 |
|
2 |
|
alcomw.2 |
|
3 |
2
|
alcomiw |
|
4 |
1
|
alcomiw |
|
5 |
3 4
|
impbii |
|