Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-7 (Equality)
alcomw
Metamath Proof Explorer
Description: Weak version of alcom and biconditional form of alcomimw . Uses
only Tarski's FOL axiom schemes. (Contributed by BTernaryTau , 28-Dec-2024)
Ref
Expression
Hypotheses
alcomw.1
⊢ x = w → φ ↔ ψ
alcomw.2
⊢ y = z → φ ↔ χ
Assertion
alcomw
⊢ ∀ x ∀ y φ ↔ ∀ y ∀ x φ
Proof
Step
Hyp
Ref
Expression
1
alcomw.1
⊢ x = w → φ ↔ ψ
2
alcomw.2
⊢ y = z → φ ↔ χ
3
2
alcomimw
⊢ ∀ x ∀ y φ → ∀ y ∀ x φ
4
1
alcomimw
⊢ ∀ y ∀ x φ → ∀ x ∀ y φ
5
3 4
impbii
⊢ ∀ x ∀ y φ ↔ ∀ y ∀ x φ