Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
aleph11
Next ⟩
alephf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
aleph11
Description:
The aleph function is one-to-one.
(Contributed by
NM
, 3-Aug-2004)
Ref
Expression
Assertion
aleph11
⊢
A
∈
On
∧
B
∈
On
→
ℵ
⁡
A
=
ℵ
⁡
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
alephord3
⊢
A
∈
On
∧
B
∈
On
→
A
⊆
B
↔
ℵ
⁡
A
⊆
ℵ
⁡
B
2
alephord3
⊢
B
∈
On
∧
A
∈
On
→
B
⊆
A
↔
ℵ
⁡
B
⊆
ℵ
⁡
A
3
2
ancoms
⊢
A
∈
On
∧
B
∈
On
→
B
⊆
A
↔
ℵ
⁡
B
⊆
ℵ
⁡
A
4
1
3
anbi12d
⊢
A
∈
On
∧
B
∈
On
→
A
⊆
B
∧
B
⊆
A
↔
ℵ
⁡
A
⊆
ℵ
⁡
B
∧
ℵ
⁡
B
⊆
ℵ
⁡
A
5
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
6
eqss
⊢
ℵ
⁡
A
=
ℵ
⁡
B
↔
ℵ
⁡
A
⊆
ℵ
⁡
B
∧
ℵ
⁡
B
⊆
ℵ
⁡
A
7
4
5
6
3bitr4g
⊢
A
∈
On
∧
B
∈
On
→
A
=
B
↔
ℵ
⁡
A
=
ℵ
⁡
B
8
7
bicomd
⊢
A
∈
On
∧
B
∈
On
→
ℵ
⁡
A
=
ℵ
⁡
B
↔
A
=
B