Database
REAL AND COMPLEX NUMBERS
Cardinality of real and complex number subsets
The reals are uncountable
aleph1re
Next ⟩
aleph1irr
Metamath Proof Explorer
Ascii
Unicode
Theorem
aleph1re
Description:
There are at least aleph-one real numbers.
(Contributed by
NM
, 2-Feb-2005)
Ref
Expression
Assertion
aleph1re
⊢
ℵ
⁡
1
𝑜
≼
ℝ
Proof
Step
Hyp
Ref
Expression
1
aleph0
⊢
ℵ
⁡
∅
=
ω
2
nnenom
⊢
ℕ
≈
ω
3
2
ensymi
⊢
ω
≈
ℕ
4
1
3
eqbrtri
⊢
ℵ
⁡
∅
≈
ℕ
5
ruc
⊢
ℕ
≺
ℝ
6
ensdomtr
⊢
ℵ
⁡
∅
≈
ℕ
∧
ℕ
≺
ℝ
→
ℵ
⁡
∅
≺
ℝ
7
4
5
6
mp2an
⊢
ℵ
⁡
∅
≺
ℝ
8
alephnbtwn2
⊢
¬
ℵ
⁡
∅
≺
ℝ
∧
ℝ
≺
ℵ
⁡
suc
⁡
∅
9
7
8
mptnan
⊢
¬
ℝ
≺
ℵ
⁡
suc
⁡
∅
10
df-1o
⊢
1
𝑜
=
suc
⁡
∅
11
10
fveq2i
⊢
ℵ
⁡
1
𝑜
=
ℵ
⁡
suc
⁡
∅
12
11
breq2i
⊢
ℝ
≺
ℵ
⁡
1
𝑜
↔
ℝ
≺
ℵ
⁡
suc
⁡
∅
13
9
12
mtbir
⊢
¬
ℝ
≺
ℵ
⁡
1
𝑜
14
fvex
⊢
ℵ
⁡
1
𝑜
∈
V
15
reex
⊢
ℝ
∈
V
16
domtri
⊢
ℵ
⁡
1
𝑜
∈
V
∧
ℝ
∈
V
→
ℵ
⁡
1
𝑜
≼
ℝ
↔
¬
ℝ
≺
ℵ
⁡
1
𝑜
17
14
15
16
mp2an
⊢
ℵ
⁡
1
𝑜
≼
ℝ
↔
¬
ℝ
≺
ℵ
⁡
1
𝑜
18
13
17
mpbir
⊢
ℵ
⁡
1
𝑜
≼
ℝ