Metamath Proof Explorer


Theorem aleph1re

Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005)

Ref Expression
Assertion aleph1re 1 𝑜

Proof

Step Hyp Ref Expression
1 aleph0 = ω
2 nnenom ω
3 2 ensymi ω
4 1 3 eqbrtri
5 ruc
6 ensdomtr
7 4 5 6 mp2an
8 alephnbtwn2 ¬ suc
9 7 8 mptnan ¬ suc
10 df-1o 1 𝑜 = suc
11 10 fveq2i 1 𝑜 = suc
12 11 breq2i 1 𝑜 suc
13 9 12 mtbir ¬ 1 𝑜
14 fvex 1 𝑜 V
15 reex V
16 domtri 1 𝑜 V V 1 𝑜 ¬ 1 𝑜
17 14 15 16 mp2an 1 𝑜 ¬ 1 𝑜
18 13 17 mpbir 1 𝑜