Metamath Proof Explorer


Theorem alephadd

Description: The sum of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion alephadd A ⊔︀ B A B

Proof

Step Hyp Ref Expression
1 fvex A V
2 fvex B V
3 djuex A V B V A ⊔︀ B V
4 1 2 3 mp2an A ⊔︀ B V
5 alephfnon Fn On
6 5 fndmi dom = On
7 6 eleq2i A dom A On
8 7 notbii ¬ A dom ¬ A On
9 6 eleq2i B dom B On
10 9 notbii ¬ B dom ¬ B On
11 df-dju ⊔︀ = × 1 𝑜 ×
12 xpundir 1 𝑜 × = × 1 𝑜 ×
13 xp0 1 𝑜 × =
14 11 12 13 3eqtr2i ⊔︀ =
15 ndmfv ¬ A dom A =
16 ndmfv ¬ B dom B =
17 djueq12 A = B = A ⊔︀ B = ⊔︀
18 15 16 17 syl2an ¬ A dom ¬ B dom A ⊔︀ B = ⊔︀
19 15 adantr ¬ A dom ¬ B dom A =
20 16 adantl ¬ A dom ¬ B dom B =
21 19 20 uneq12d ¬ A dom ¬ B dom A B =
22 un0 =
23 21 22 eqtrdi ¬ A dom ¬ B dom A B =
24 14 18 23 3eqtr4a ¬ A dom ¬ B dom A ⊔︀ B = A B
25 8 10 24 syl2anbr ¬ A On ¬ B On A ⊔︀ B = A B
26 eqeng A ⊔︀ B V A ⊔︀ B = A B A ⊔︀ B A B
27 4 25 26 mpsyl ¬ A On ¬ B On A ⊔︀ B A B
28 27 ex ¬ A On ¬ B On A ⊔︀ B A B
29 alephgeom A On ω A
30 ssdomg A V ω A ω A
31 1 30 ax-mp ω A ω A
32 alephon A On
33 onenon A On A dom card
34 32 33 ax-mp A dom card
35 alephon B On
36 onenon B On B dom card
37 35 36 ax-mp B dom card
38 infdju A dom card B dom card ω A A ⊔︀ B A B
39 34 37 38 mp3an12 ω A A ⊔︀ B A B
40 31 39 syl ω A A ⊔︀ B A B
41 29 40 sylbi A On A ⊔︀ B A B
42 alephgeom B On ω B
43 ssdomg B V ω B ω B
44 2 43 ax-mp ω B ω B
45 djucomen A V B V A ⊔︀ B B ⊔︀ A
46 1 2 45 mp2an A ⊔︀ B B ⊔︀ A
47 infdju B dom card A dom card ω B B ⊔︀ A B A
48 37 34 47 mp3an12 ω B B ⊔︀ A B A
49 entr A ⊔︀ B B ⊔︀ A B ⊔︀ A B A A ⊔︀ B B A
50 46 48 49 sylancr ω B A ⊔︀ B B A
51 uncom B A = A B
52 50 51 breqtrdi ω B A ⊔︀ B A B
53 44 52 syl ω B A ⊔︀ B A B
54 42 53 sylbi B On A ⊔︀ B A B
55 28 41 54 pm2.61ii A ⊔︀ B A B