Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|
2 |
|
fvex |
|
3 |
|
djuex |
|
4 |
1 2 3
|
mp2an |
|
5 |
|
alephfnon |
|
6 |
5
|
fndmi |
|
7 |
6
|
eleq2i |
|
8 |
7
|
notbii |
|
9 |
6
|
eleq2i |
|
10 |
9
|
notbii |
|
11 |
|
df-dju |
|
12 |
|
xpundir |
|
13 |
|
xp0 |
|
14 |
11 12 13
|
3eqtr2i |
|
15 |
|
ndmfv |
|
16 |
|
ndmfv |
|
17 |
|
djueq12 |
|
18 |
15 16 17
|
syl2an |
|
19 |
15
|
adantr |
|
20 |
16
|
adantl |
|
21 |
19 20
|
uneq12d |
|
22 |
|
un0 |
|
23 |
21 22
|
eqtrdi |
|
24 |
14 18 23
|
3eqtr4a |
|
25 |
8 10 24
|
syl2anbr |
|
26 |
|
eqeng |
|
27 |
4 25 26
|
mpsyl |
|
28 |
27
|
ex |
|
29 |
|
alephgeom |
|
30 |
|
ssdomg |
|
31 |
1 30
|
ax-mp |
|
32 |
|
alephon |
|
33 |
|
onenon |
|
34 |
32 33
|
ax-mp |
|
35 |
|
alephon |
|
36 |
|
onenon |
|
37 |
35 36
|
ax-mp |
|
38 |
|
infdju |
|
39 |
34 37 38
|
mp3an12 |
|
40 |
31 39
|
syl |
|
41 |
29 40
|
sylbi |
|
42 |
|
alephgeom |
|
43 |
|
ssdomg |
|
44 |
2 43
|
ax-mp |
|
45 |
|
djucomen |
|
46 |
1 2 45
|
mp2an |
|
47 |
|
infdju |
|
48 |
37 34 47
|
mp3an12 |
|
49 |
|
entr |
|
50 |
46 48 49
|
sylancr |
|
51 |
|
uncom |
|
52 |
50 51
|
breqtrdi |
|
53 |
44 52
|
syl |
|
54 |
42 53
|
sylbi |
|
55 |
28 41 54
|
pm2.61ii |
|