Metamath Proof Explorer


Theorem alephdom

Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009)

Ref Expression
Assertion alephdom A On B On A B A B

Proof

Step Hyp Ref Expression
1 onsseleq A On B On A B A B A = B
2 alephord A On B On A B A B
3 sdomdom A B A B
4 2 3 syl6bi A On B On A B A B
5 fvex A V
6 fveq2 A = B A = B
7 eqeng A V A = B A B
8 5 6 7 mpsyl A = B A B
9 8 a1i A On B On A = B A B
10 endom A B A B
11 9 10 syl6 A On B On A = B A B
12 4 11 jaod A On B On A B A = B A B
13 1 12 sylbid A On B On A B A B
14 eloni B On Ord B
15 eloni A On Ord A
16 ordtri2or Ord B Ord A B A A B
17 14 15 16 syl2anr A On B On B A A B
18 17 ord A On B On ¬ B A A B
19 18 con1d A On B On ¬ A B B A
20 alephord B On A On B A B A
21 20 ancoms A On B On B A B A
22 sdomnen B A ¬ B A
23 sdomdom B A B A
24 sbth B A A B B A
25 24 ex B A A B B A
26 23 25 syl B A A B B A
27 22 26 mtod B A ¬ A B
28 21 27 syl6bi A On B On B A ¬ A B
29 19 28 syld A On B On ¬ A B ¬ A B
30 13 29 impcon4bid A On B On A B A B