Metamath Proof Explorer


Theorem alephexp1

Description: An exponentiation law for alephs. Lemma 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion alephexp1 A On B On A B A B 2 𝑜 B

Proof

Step Hyp Ref Expression
1 alephon B On
2 onenon B On B dom card
3 1 2 mp1i A On B On A B B dom card
4 fvex B V
5 simplr A On B On A B B On
6 alephgeom B On ω B
7 5 6 sylib A On B On A B ω B
8 ssdomg B V ω B ω B
9 4 7 8 mpsyl A On B On A B ω B
10 fvex A V
11 ordom Ord ω
12 2onn 2 𝑜 ω
13 ordelss Ord ω 2 𝑜 ω 2 𝑜 ω
14 11 12 13 mp2an 2 𝑜 ω
15 simpll A On B On A B A On
16 alephgeom A On ω A
17 15 16 sylib A On B On A B ω A
18 14 17 sstrid A On B On A B 2 𝑜 A
19 ssdomg A V 2 𝑜 A 2 𝑜 A
20 10 18 19 mpsyl A On B On A B 2 𝑜 A
21 alephord3 A On B On A B A B
22 ssdomg B V A B A B
23 4 22 ax-mp A B A B
24 21 23 syl6bi A On B On A B A B
25 24 imp A On B On A B A B
26 4 canth2 B 𝒫 B
27 sdomdom B 𝒫 B B 𝒫 B
28 26 27 ax-mp B 𝒫 B
29 domtr A B B 𝒫 B A 𝒫 B
30 25 28 29 sylancl A On B On A B A 𝒫 B
31 mappwen B dom card ω B 2 𝑜 A A 𝒫 B A B 𝒫 B
32 3 9 20 30 31 syl22anc A On B On A B A B 𝒫 B
33 4 pw2en 𝒫 B 2 𝑜 B
34 enen2 𝒫 B 2 𝑜 B A B 𝒫 B A B 2 𝑜 B
35 33 34 ax-mp A B 𝒫 B A B 2 𝑜 B
36 32 35 sylib A On B On A B A B 2 𝑜 B