Metamath Proof Explorer


Theorem alephfp

Description: The aleph function has a fixed point. Similar to Proposition 11.18 of TakeutiZaring p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004) (Proof shortened by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis alephfplem.1 H = rec ω ω
Assertion alephfp H ω = H ω

Proof

Step Hyp Ref Expression
1 alephfplem.1 H = rec ω ω
2 1 alephfplem4 H ω ran
3 isinfcard ω H ω card H ω = H ω H ω ran
4 cardalephex ω H ω card H ω = H ω z On H ω = z
5 4 biimpa ω H ω card H ω = H ω z On H ω = z
6 3 5 sylbir H ω ran z On H ω = z
7 alephle z On z z
8 alephon z On
9 8 onirri ¬ z z
10 frfnom rec ω ω Fn ω
11 1 fneq1i H Fn ω rec ω ω Fn ω
12 10 11 mpbir H Fn ω
13 fnfun H Fn ω Fun H
14 eluniima Fun H z H ω v ω z H v
15 12 13 14 mp2b z H ω v ω z H v
16 alephsson ran On
17 1 alephfplem3 v ω H v ran
18 16 17 sselid v ω H v On
19 alephord2i H v On z H v z H v
20 18 19 syl v ω z H v z H v
21 1 alephfplem2 v ω H suc v = H v
22 peano2 v ω suc v ω
23 fnfvelrn H Fn ω suc v ω H suc v ran H
24 12 23 mpan suc v ω H suc v ran H
25 fnima H Fn ω H ω = ran H
26 12 25 ax-mp H ω = ran H
27 24 26 eleqtrrdi suc v ω H suc v H ω
28 22 27 syl v ω H suc v H ω
29 21 28 eqeltrrd v ω H v H ω
30 elssuni H v H ω H v H ω
31 29 30 syl v ω H v H ω
32 31 sseld v ω z H v z H ω
33 20 32 syld v ω z H v z H ω
34 33 rexlimiv v ω z H v z H ω
35 15 34 sylbi z H ω z H ω
36 eleq2 H ω = z z H ω z z
37 eleq2 H ω = z z H ω z z
38 36 37 imbi12d H ω = z z H ω z H ω z z z z
39 35 38 mpbii H ω = z z z z z
40 9 39 mtoi H ω = z ¬ z z
41 7 40 anim12i z On H ω = z z z ¬ z z
42 eloni z On Ord z
43 8 onordi Ord z
44 ordtri4 Ord z Ord z z = z z z ¬ z z
45 42 43 44 sylancl z On z = z z z ¬ z z
46 45 adantr z On H ω = z z = z z z ¬ z z
47 41 46 mpbird z On H ω = z z = z
48 eqeq2 H ω = z z = H ω z = z
49 48 adantl z On H ω = z z = H ω z = z
50 47 49 mpbird z On H ω = z z = H ω
51 50 eqcomd z On H ω = z H ω = z
52 51 fveq2d z On H ω = z H ω = z
53 eqeq2 H ω = z H ω = H ω H ω = z
54 53 adantl z On H ω = z H ω = H ω H ω = z
55 52 54 mpbird z On H ω = z H ω = H ω
56 55 rexlimiva z On H ω = z H ω = H ω
57 2 6 56 mp2b H ω = H ω