Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
alephfplem1
Next ⟩
alephfplem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
alephfplem1
Description:
Lemma for
alephfp
.
(Contributed by
NM
, 6-Nov-2004)
Ref
Expression
Hypothesis
alephfplem.1
⊢
H
=
rec
⁡
ℵ
ω
↾
ω
Assertion
alephfplem1
⊢
H
⁡
∅
∈
ran
⁡
ℵ
Proof
Step
Hyp
Ref
Expression
1
alephfplem.1
⊢
H
=
rec
⁡
ℵ
ω
↾
ω
2
omex
⊢
ω
∈
V
3
fr0g
⊢
ω
∈
V
→
rec
⁡
ℵ
ω
↾
ω
⁡
∅
=
ω
4
2
3
ax-mp
⊢
rec
⁡
ℵ
ω
↾
ω
⁡
∅
=
ω
5
1
fveq1i
⊢
H
⁡
∅
=
rec
⁡
ℵ
ω
↾
ω
⁡
∅
6
aleph0
⊢
ℵ
⁡
∅
=
ω
7
4
5
6
3eqtr4i
⊢
H
⁡
∅
=
ℵ
⁡
∅
8
alephfnon
⊢
ℵ
Fn
On
9
0elon
⊢
∅
∈
On
10
fnfvelrn
⊢
ℵ
Fn
On
∧
∅
∈
On
→
ℵ
⁡
∅
∈
ran
⁡
ℵ
11
8
9
10
mp2an
⊢
ℵ
⁡
∅
∈
ran
⁡
ℵ
12
7
11
eqeltri
⊢
H
⁡
∅
∈
ran
⁡
ℵ