Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
alephfplem3
Next ⟩
alephfplem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
alephfplem3
Description:
Lemma for
alephfp
.
(Contributed by
NM
, 6-Nov-2004)
Ref
Expression
Hypothesis
alephfplem.1
⊢
H
=
rec
⁡
ℵ
ω
↾
ω
Assertion
alephfplem3
⊢
v
∈
ω
→
H
⁡
v
∈
ran
⁡
ℵ
Proof
Step
Hyp
Ref
Expression
1
alephfplem.1
⊢
H
=
rec
⁡
ℵ
ω
↾
ω
2
fveq2
⊢
v
=
∅
→
H
⁡
v
=
H
⁡
∅
3
2
eleq1d
⊢
v
=
∅
→
H
⁡
v
∈
ran
⁡
ℵ
↔
H
⁡
∅
∈
ran
⁡
ℵ
4
fveq2
⊢
v
=
w
→
H
⁡
v
=
H
⁡
w
5
4
eleq1d
⊢
v
=
w
→
H
⁡
v
∈
ran
⁡
ℵ
↔
H
⁡
w
∈
ran
⁡
ℵ
6
fveq2
⊢
v
=
suc
⁡
w
→
H
⁡
v
=
H
⁡
suc
⁡
w
7
6
eleq1d
⊢
v
=
suc
⁡
w
→
H
⁡
v
∈
ran
⁡
ℵ
↔
H
⁡
suc
⁡
w
∈
ran
⁡
ℵ
8
1
alephfplem1
⊢
H
⁡
∅
∈
ran
⁡
ℵ
9
alephfnon
⊢
ℵ
Fn
On
10
alephsson
⊢
ran
⁡
ℵ
⊆
On
11
10
sseli
⊢
H
⁡
w
∈
ran
⁡
ℵ
→
H
⁡
w
∈
On
12
fnfvelrn
⊢
ℵ
Fn
On
∧
H
⁡
w
∈
On
→
ℵ
⁡
H
⁡
w
∈
ran
⁡
ℵ
13
9
11
12
sylancr
⊢
H
⁡
w
∈
ran
⁡
ℵ
→
ℵ
⁡
H
⁡
w
∈
ran
⁡
ℵ
14
1
alephfplem2
⊢
w
∈
ω
→
H
⁡
suc
⁡
w
=
ℵ
⁡
H
⁡
w
15
14
eleq1d
⊢
w
∈
ω
→
H
⁡
suc
⁡
w
∈
ran
⁡
ℵ
↔
ℵ
⁡
H
⁡
w
∈
ran
⁡
ℵ
16
13
15
syl5ibr
⊢
w
∈
ω
→
H
⁡
w
∈
ran
⁡
ℵ
→
H
⁡
suc
⁡
w
∈
ran
⁡
ℵ
17
3
5
7
8
16
finds1
⊢
v
∈
ω
→
H
⁡
v
∈
ran
⁡
ℵ