Metamath Proof Explorer


Theorem alephgch

Description: If ( alephsuc A ) is equinumerous to the powerset of ( alephA ) , then ( alephA ) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephgch suc A 𝒫 A A GCH

Proof

Step Hyp Ref Expression
1 alephnbtwn2 ¬ A x x suc A
2 sdomen2 suc A 𝒫 A x suc A x 𝒫 A
3 2 anbi2d suc A 𝒫 A A x x suc A A x x 𝒫 A
4 1 3 mtbii suc A 𝒫 A ¬ A x x 𝒫 A
5 4 alrimiv suc A 𝒫 A x ¬ A x x 𝒫 A
6 5 olcd suc A 𝒫 A A Fin x ¬ A x x 𝒫 A
7 fvex A V
8 elgch A V A GCH A Fin x ¬ A x x 𝒫 A
9 7 8 ax-mp A GCH A Fin x ¬ A x x 𝒫 A
10 6 9 sylibr suc A 𝒫 A A GCH