Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
alephislim
Next ⟩
aleph11
Metamath Proof Explorer
Ascii
Unicode
Theorem
alephislim
Description:
Every aleph is a limit ordinal.
(Contributed by
NM
, 11-Nov-2003)
Ref
Expression
Assertion
alephislim
⊢
A
∈
On
↔
Lim
⁡
ℵ
⁡
A
Proof
Step
Hyp
Ref
Expression
1
alephgeom
⊢
A
∈
On
↔
ω
⊆
ℵ
⁡
A
2
cardlim
⊢
ω
⊆
card
⁡
ℵ
⁡
A
↔
Lim
⁡
card
⁡
ℵ
⁡
A
3
alephcard
⊢
card
⁡
ℵ
⁡
A
=
ℵ
⁡
A
4
3
sseq2i
⊢
ω
⊆
card
⁡
ℵ
⁡
A
↔
ω
⊆
ℵ
⁡
A
5
limeq
⊢
card
⁡
ℵ
⁡
A
=
ℵ
⁡
A
→
Lim
⁡
card
⁡
ℵ
⁡
A
↔
Lim
⁡
ℵ
⁡
A
6
3
5
ax-mp
⊢
Lim
⁡
card
⁡
ℵ
⁡
A
↔
Lim
⁡
ℵ
⁡
A
7
2
4
6
3bitr3i
⊢
ω
⊆
ℵ
⁡
A
↔
Lim
⁡
ℵ
⁡
A
8
1
7
bitri
⊢
A
∈
On
↔
Lim
⁡
ℵ
⁡
A