Metamath Proof Explorer


Theorem alephle

Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of TakeutiZaring p. 91. (Later, in alephfp2 , we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003) (Proof shortened by Mario Carneiro, 22-Feb-2013)

Ref Expression
Assertion alephle A On A A

Proof

Step Hyp Ref Expression
1 id x = y x = y
2 fveq2 x = y x = y
3 1 2 sseq12d x = y x x y y
4 id x = A x = A
5 fveq2 x = A x = A
6 4 5 sseq12d x = A x x A A
7 alephord2i x On y x y x
8 7 imp x On y x y x
9 onelon x On y x y On
10 alephon x On
11 ontr2 y On x On y y y x y x
12 9 10 11 sylancl x On y x y y y x y x
13 8 12 mpan2d x On y x y y y x
14 13 ralimdva x On y x y y y x y x
15 10 onirri ¬ x x
16 eleq1 y = x y x x x
17 16 rspccv y x y x x x x x
18 15 17 mtoi y x y x ¬ x x
19 ontri1 x On x On x x ¬ x x
20 10 19 mpan2 x On x x ¬ x x
21 18 20 syl5ibr x On y x y x x x
22 14 21 syld x On y x y y x x
23 3 6 22 tfis3 A On A A