Metamath Proof Explorer


Theorem alephlim

Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of Suppes p. 91. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephlim A V Lim A A = x A x

Proof

Step Hyp Ref Expression
1 rdglim2a A V Lim A rec har ω A = x A rec har ω x
2 df-aleph = rec har ω
3 2 fveq1i A = rec har ω A
4 2 fveq1i x = rec har ω x
5 4 a1i x A x = rec har ω x
6 5 iuneq2i x A x = x A rec har ω x
7 1 3 6 3eqtr4g A V Lim A A = x A x