Metamath Proof Explorer


Theorem alephmul

Description: The product of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion alephmul A On B On A × B A B

Proof

Step Hyp Ref Expression
1 alephgeom A On ω A
2 fvex A V
3 ssdomg A V ω A ω A
4 2 3 ax-mp ω A ω A
5 1 4 sylbi A On ω A
6 alephon A On
7 onenon A On A dom card
8 6 7 ax-mp A dom card
9 5 8 jctil A On A dom card ω A
10 alephgeom B On ω B
11 fvex B V
12 ssdomg B V ω B ω B
13 11 12 ax-mp ω B ω B
14 infn0 ω B B
15 13 14 syl ω B B
16 10 15 sylbi B On B
17 alephon B On
18 onenon B On B dom card
19 17 18 ax-mp B dom card
20 16 19 jctil B On B dom card B
21 infxp A dom card ω A B dom card B A × B A B
22 9 20 21 syl2an A On B On A × B A B