Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of Suppes p. 229. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | alephnbtwn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon | |
|
2 | id | |
|
3 | cardon | |
|
4 | 2 3 | eqeltrrdi | |
5 | onenon | |
|
6 | 4 5 | syl | |
7 | cardsdomel | |
|
8 | 1 6 7 | sylancr | |
9 | eleq2 | |
|
10 | 8 9 | bitrd | |
11 | 10 | adantl | |
12 | alephsuc | |
|
13 | onenon | |
|
14 | harval2 | |
|
15 | 1 13 14 | mp2b | |
16 | 12 15 | eqtrdi | |
17 | 16 | eleq2d | |
18 | 17 | biimpd | |
19 | breq2 | |
|
20 | 19 | onnminsb | |
21 | 18 20 | sylan9 | |
22 | 21 | con2d | |
23 | 4 22 | sylan2 | |
24 | 11 23 | sylbird | |
25 | imnan | |
|
26 | 24 25 | sylib | |
27 | 26 | ex | |
28 | n0i | |
|
29 | alephfnon | |
|
30 | 29 | fndmi | |
31 | 30 | eleq2i | |
32 | ndmfv | |
|
33 | 31 32 | sylnbir | |
34 | 28 33 | nsyl2 | |
35 | onsucb | |
|
36 | 34 35 | sylibr | |
37 | 36 | adantl | |
38 | 37 | con3i | |
39 | 38 | a1d | |
40 | 27 39 | pm2.61i | |