Metamath Proof Explorer


Theorem alephnbtwn

Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of Suppes p. 229. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephnbtwn cardB=B¬ABBsucA

Proof

Step Hyp Ref Expression
1 alephon AOn
2 id cardB=BcardB=B
3 cardon cardBOn
4 2 3 eqeltrrdi cardB=BBOn
5 onenon BOnBdomcard
6 4 5 syl cardB=BBdomcard
7 cardsdomel AOnBdomcardABAcardB
8 1 6 7 sylancr cardB=BABAcardB
9 eleq2 cardB=BAcardBAB
10 8 9 bitrd cardB=BABAB
11 10 adantl AOncardB=BABAB
12 alephsuc AOnsucA=harA
13 onenon AOnAdomcard
14 harval2 AdomcardharA=xOn|Ax
15 1 13 14 mp2b harA=xOn|Ax
16 12 15 eqtrdi AOnsucA=xOn|Ax
17 16 eleq2d AOnBsucABxOn|Ax
18 17 biimpd AOnBsucABxOn|Ax
19 breq2 x=BAxAB
20 19 onnminsb BOnBxOn|Ax¬AB
21 18 20 sylan9 AOnBOnBsucA¬AB
22 21 con2d AOnBOnAB¬BsucA
23 4 22 sylan2 AOncardB=BAB¬BsucA
24 11 23 sylbird AOncardB=BAB¬BsucA
25 imnan AB¬BsucA¬ABBsucA
26 24 25 sylib AOncardB=B¬ABBsucA
27 26 ex AOncardB=B¬ABBsucA
28 n0i BsucA¬sucA=
29 alephfnon FnOn
30 29 fndmi dom=On
31 30 eleq2i sucAdomsucAOn
32 ndmfv ¬sucAdomsucA=
33 31 32 sylnbir ¬sucAOnsucA=
34 28 33 nsyl2 BsucAsucAOn
35 onsucb AOnsucAOn
36 34 35 sylibr BsucAAOn
37 36 adantl ABBsucAAOn
38 37 con3i ¬AOn¬ABBsucA
39 38 a1d ¬AOncardB=B¬ABBsucA
40 27 39 pm2.61i cardB=B¬ABBsucA