Metamath Proof Explorer


Theorem alephord

Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 9-Feb-2013)

Ref Expression
Assertion alephord A On B On A B A B

Proof

Step Hyp Ref Expression
1 alephordi B On A B A B
2 1 adantl A On B On A B A B
3 brsdom A B A B ¬ A B
4 alephon A On
5 alephon B On
6 domtriord A On B On A B ¬ B A
7 4 5 6 mp2an A B ¬ B A
8 alephordi A On B A B A
9 8 con3d A On ¬ B A ¬ B A
10 7 9 syl5bi A On A B ¬ B A
11 10 adantr A On B On A B ¬ B A
12 ontri1 A On B On A B ¬ B A
13 11 12 sylibrd A On B On A B A B
14 fveq2 A = B A = B
15 eqeng A On A = B A B
16 4 14 15 mpsyl A = B A B
17 16 necon3bi ¬ A B A B
18 13 17 anim12d1 A On B On A B ¬ A B A B A B
19 onelpss A On B On A B A B A B
20 18 19 sylibrd A On B On A B ¬ A B A B
21 3 20 syl5bi A On B On A B A B
22 2 21 impbid A On B On A B A B