Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
alephord3
Next ⟩
alephsucdom
Metamath Proof Explorer
Ascii
Unicode
Theorem
alephord3
Description:
Ordering property of the aleph function.
(Contributed by
NM
, 11-Nov-2003)
Ref
Expression
Assertion
alephord3
⊢
A
∈
On
∧
B
∈
On
→
A
⊆
B
↔
ℵ
⁡
A
⊆
ℵ
⁡
B
Proof
Step
Hyp
Ref
Expression
1
alephord2
⊢
B
∈
On
∧
A
∈
On
→
B
∈
A
↔
ℵ
⁡
B
∈
ℵ
⁡
A
2
1
ancoms
⊢
A
∈
On
∧
B
∈
On
→
B
∈
A
↔
ℵ
⁡
B
∈
ℵ
⁡
A
3
2
notbid
⊢
A
∈
On
∧
B
∈
On
→
¬
B
∈
A
↔
¬
ℵ
⁡
B
∈
ℵ
⁡
A
4
ontri1
⊢
A
∈
On
∧
B
∈
On
→
A
⊆
B
↔
¬
B
∈
A
5
alephon
⊢
ℵ
⁡
A
∈
On
6
alephon
⊢
ℵ
⁡
B
∈
On
7
ontri1
⊢
ℵ
⁡
A
∈
On
∧
ℵ
⁡
B
∈
On
→
ℵ
⁡
A
⊆
ℵ
⁡
B
↔
¬
ℵ
⁡
B
∈
ℵ
⁡
A
8
5
6
7
mp2an
⊢
ℵ
⁡
A
⊆
ℵ
⁡
B
↔
¬
ℵ
⁡
B
∈
ℵ
⁡
A
9
8
a1i
⊢
A
∈
On
∧
B
∈
On
→
ℵ
⁡
A
⊆
ℵ
⁡
B
↔
¬
ℵ
⁡
B
∈
ℵ
⁡
A
10
3
4
9
3bitr4d
⊢
A
∈
On
∧
B
∈
On
→
A
⊆
B
↔
ℵ
⁡
A
⊆
ℵ
⁡
B