Metamath Proof Explorer


Theorem alephord3

Description: Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephord3 A On B On A B A B

Proof

Step Hyp Ref Expression
1 alephord2 B On A On B A B A
2 1 ancoms A On B On B A B A
3 2 notbid A On B On ¬ B A ¬ B A
4 ontri1 A On B On A B ¬ B A
5 alephon A On
6 alephon B On
7 ontri1 A On B On A B ¬ B A
8 5 6 7 mp2an A B ¬ B A
9 8 a1i A On B On A B ¬ B A
10 3 4 9 3bitr4d A On B On A B A B