Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|
2 |
|
fveq2 |
|
3 |
2
|
breq2d |
|
4 |
1 3
|
imbi12d |
|
5 |
|
eleq2 |
|
6 |
|
fveq2 |
|
7 |
6
|
breq2d |
|
8 |
5 7
|
imbi12d |
|
9 |
|
eleq2 |
|
10 |
|
fveq2 |
|
11 |
10
|
breq2d |
|
12 |
9 11
|
imbi12d |
|
13 |
|
eleq2 |
|
14 |
|
fveq2 |
|
15 |
14
|
breq2d |
|
16 |
13 15
|
imbi12d |
|
17 |
|
noel |
|
18 |
17
|
pm2.21i |
|
19 |
|
vex |
|
20 |
19
|
elsuc2 |
|
21 |
|
alephordilem1 |
|
22 |
|
sdomtr |
|
23 |
21 22
|
sylan2 |
|
24 |
23
|
expcom |
|
25 |
24
|
imim2d |
|
26 |
25
|
com23 |
|
27 |
|
fveq2 |
|
28 |
27
|
breq1d |
|
29 |
21 28
|
syl5ibr |
|
30 |
29
|
a1d |
|
31 |
30
|
com3r |
|
32 |
26 31
|
jaod |
|
33 |
20 32
|
syl5bi |
|
34 |
33
|
com23 |
|
35 |
|
fvexd |
|
36 |
|
fveq2 |
|
37 |
36
|
ssiun2s |
|
38 |
|
vex |
|
39 |
|
alephlim |
|
40 |
38 39
|
mpan |
|
41 |
40
|
sseq2d |
|
42 |
37 41
|
syl5ibr |
|
43 |
|
ssdomg |
|
44 |
35 42 43
|
sylsyld |
|
45 |
|
limsuc |
|
46 |
|
fveq2 |
|
47 |
46
|
ssiun2s |
|
48 |
40
|
sseq2d |
|
49 |
47 48
|
syl5ibr |
|
50 |
|
ssdomg |
|
51 |
35 49 50
|
sylsyld |
|
52 |
45 51
|
sylbid |
|
53 |
52
|
imp |
|
54 |
|
domnsym |
|
55 |
53 54
|
syl |
|
56 |
|
limelon |
|
57 |
38 56
|
mpan |
|
58 |
|
onelon |
|
59 |
57 58
|
sylan |
|
60 |
|
ensym |
|
61 |
|
alephordilem1 |
|
62 |
|
ensdomtr |
|
63 |
62
|
ex |
|
64 |
60 61 63
|
syl2im |
|
65 |
59 64
|
syl5com |
|
66 |
55 65
|
mtod |
|
67 |
66
|
ex |
|
68 |
44 67
|
jcad |
|
69 |
|
brsdom |
|
70 |
68 69
|
syl6ibr |
|
71 |
70
|
a1d |
|
72 |
4 8 12 16 18 34 71
|
tfinds |
|