Metamath Proof Explorer


Theorem alephsing

Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if ( alephA ) < A , then ( alephA ) is singular. Conversely, if ( alephA ) is regular (i.e. weakly inaccessible), then ( alephA ) = A , so A has to be rather large (see alephfp ). Proposition 11.13 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion alephsing Lim A cf A = cf A

Proof

Step Hyp Ref Expression
1 alephfnon Fn On
2 fnfun Fn On Fun
3 1 2 ax-mp Fun
4 simpl A V Lim A A V
5 resfunexg Fun A V A V
6 3 4 5 sylancr A V Lim A A V
7 limelon A V Lim A A On
8 onss A On A On
9 7 8 syl A V Lim A A On
10 fnssres Fn On A On A Fn A
11 1 9 10 sylancr A V Lim A A Fn A
12 fvres y A A y = y
13 12 adantl A On y A A y = y
14 alephord2i A On y A y A
15 14 imp A On y A y A
16 13 15 eqeltrd A On y A A y A
17 7 16 sylan A V Lim A y A A y A
18 17 ralrimiva A V Lim A y A A y A
19 fnfvrnss A Fn A y A A y A ran A A
20 11 18 19 syl2anc A V Lim A ran A A
21 df-f A : A A A Fn A ran A A
22 11 20 21 sylanbrc A V Lim A A : A A
23 alephsmo Smo
24 1 fndmi dom = On
25 7 24 eleqtrrdi A V Lim A A dom
26 smores Smo A dom Smo A
27 23 25 26 sylancr A V Lim A Smo A
28 alephlim A V Lim A A = y A y
29 28 eleq2d A V Lim A x A x y A y
30 eliun x y A y y A x y
31 alephon y On
32 31 onelssi x y x y
33 32 reximi y A x y y A x y
34 30 33 sylbi x y A y y A x y
35 29 34 syl6bi A V Lim A x A y A x y
36 35 ralrimiv A V Lim A x A y A x y
37 feq1 f = A f : A A A : A A
38 smoeq f = A Smo f Smo A
39 fveq1 f = A f y = A y
40 39 12 sylan9eq f = A y A f y = y
41 40 sseq2d f = A y A x f y x y
42 41 rexbidva f = A y A x f y y A x y
43 42 ralbidv f = A x A y A x f y x A y A x y
44 37 38 43 3anbi123d f = A f : A A Smo f x A y A x f y A : A A Smo A x A y A x y
45 44 spcegv A V A : A A Smo A x A y A x y f f : A A Smo f x A y A x f y
46 45 imp A V A : A A Smo A x A y A x y f f : A A Smo f x A y A x f y
47 6 22 27 36 46 syl13anc A V Lim A f f : A A Smo f x A y A x f y
48 alephon A On
49 cfcof A On A On f f : A A Smo f x A y A x f y cf A = cf A
50 48 7 49 sylancr A V Lim A f f : A A Smo f x A y A x f y cf A = cf A
51 47 50 mpd A V Lim A cf A = cf A
52 51 expcom Lim A A V cf A = cf A
53 cf0 cf =
54 fvprc ¬ A V A =
55 54 fveq2d ¬ A V cf A = cf
56 fvprc ¬ A V cf A =
57 53 55 56 3eqtr4a ¬ A V cf A = cf A
58 52 57 pm2.61d1 Lim A cf A = cf A