Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
alephsmo
Next ⟩
alephf1ALT
Metamath Proof Explorer
Ascii
Unicode
Theorem
alephsmo
Description:
The aleph function is strictly monotone.
(Contributed by
Mario Carneiro
, 15-Mar-2013)
Ref
Expression
Assertion
alephsmo
⊢
Smo
⁡
ℵ
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
On
⊆
On
2
ordon
⊢
Ord
⁡
On
3
alephord2i
⊢
x
∈
On
→
y
∈
x
→
ℵ
⁡
y
∈
ℵ
⁡
x
4
3
ralrimiv
⊢
x
∈
On
→
∀
y
∈
x
ℵ
⁡
y
∈
ℵ
⁡
x
5
4
rgen
⊢
∀
x
∈
On
∀
y
∈
x
ℵ
⁡
y
∈
ℵ
⁡
x
6
alephfnon
⊢
ℵ
Fn
On
7
alephsson
⊢
ran
⁡
ℵ
⊆
On
8
df-f
⊢
ℵ
:
On
⟶
On
↔
ℵ
Fn
On
∧
ran
⁡
ℵ
⊆
On
9
6
7
8
mpbir2an
⊢
ℵ
:
On
⟶
On
10
issmo2
⊢
ℵ
:
On
⟶
On
→
On
⊆
On
∧
Ord
⁡
On
∧
∀
x
∈
On
∀
y
∈
x
ℵ
⁡
y
∈
ℵ
⁡
x
→
Smo
⁡
ℵ
11
9
10
ax-mp
⊢
On
⊆
On
∧
Ord
⁡
On
∧
∀
x
∈
On
∀
y
∈
x
ℵ
⁡
y
∈
ℵ
⁡
x
→
Smo
⁡
ℵ
12
1
2
5
11
mp3an
⊢
Smo
⁡
ℵ