Metamath Proof Explorer


Theorem alephsmo

Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013)

Ref Expression
Assertion alephsmo Smo

Proof

Step Hyp Ref Expression
1 ssid On On
2 ordon Ord On
3 alephord2i x On y x y x
4 3 ralrimiv x On y x y x
5 4 rgen x On y x y x
6 alephfnon Fn On
7 alephsson ran On
8 df-f : On On Fn On ran On
9 6 7 8 mpbir2an : On On
10 issmo2 : On On On On Ord On x On y x y x Smo
11 9 10 ax-mp On On Ord On x On y x y x Smo
12 1 2 5 11 mp3an Smo