Metamath Proof Explorer


Theorem alephsuc

Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of Suppes p. 91. Here we express the successor aleph in terms of the Hartogs function df-har , which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephsuc A On suc A = har A

Proof

Step Hyp Ref Expression
1 rdgsuc A On rec har ω suc A = har rec har ω A
2 df-aleph = rec har ω
3 2 fveq1i suc A = rec har ω suc A
4 2 fveq1i A = rec har ω A
5 4 fveq2i har A = har rec har ω A
6 1 3 5 3eqtr4g A On suc A = har A