Metamath Proof Explorer


Theorem alephsuc2

Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs function by transfinite recursion, starting from _om . Using this theorem we could define the aleph function with { z e. On | z ~<_ x } in place of |^| { z e. On | x ~< z } in df-aleph . (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephsuc2 A On suc A = x On | x A

Proof

Step Hyp Ref Expression
1 alephon suc A On
2 1 oneli y suc A y On
3 alephcard card suc A = suc A
4 iscard card suc A = suc A suc A On y suc A y suc A
5 3 4 mpbi suc A On y suc A y suc A
6 5 simpri y suc A y suc A
7 6 rspec y suc A y suc A
8 2 7 jca y suc A y On y suc A
9 sdomel y On suc A On y suc A y suc A
10 1 9 mpan2 y On y suc A y suc A
11 10 imp y On y suc A y suc A
12 8 11 impbii y suc A y On y suc A
13 breq1 x = y x suc A y suc A
14 13 elrab y x On | x suc A y On y suc A
15 12 14 bitr4i y suc A y x On | x suc A
16 15 eqriv suc A = x On | x suc A
17 alephsucdom A On x A x suc A
18 17 rabbidv A On x On | x A = x On | x suc A
19 16 18 eqtr4id A On suc A = x On | x A