Metamath Proof Explorer


Theorem alephsuc3

Description: An alternate representation of a successor aleph. Compare alephsuc and alephsuc2 . Equality can be obtained by taking the card of the right-hand side then using alephcard and carden . (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion alephsuc3 A On suc A x On | x A

Proof

Step Hyp Ref Expression
1 alephsuc2 A On suc A = x On | x A
2 alephcard card A = A
3 alephon A On
4 onenon A On A dom card
5 3 4 ax-mp A dom card
6 cardval2 A dom card card A = x On | x A
7 5 6 ax-mp card A = x On | x A
8 2 7 eqtr3i A = x On | x A
9 8 a1i A On A = x On | x A
10 1 9 difeq12d A On suc A A = x On | x A x On | x A
11 difrab x On | x A x On | x A = x On | x A ¬ x A
12 bren2 x A x A ¬ x A
13 12 rabbii x On | x A = x On | x A ¬ x A
14 11 13 eqtr4i x On | x A x On | x A = x On | x A
15 10 14 eqtr2di A On x On | x A = suc A A
16 alephon suc A On
17 onenon suc A On suc A dom card
18 16 17 mp1i A On suc A dom card
19 sucelon A On suc A On
20 alephgeom suc A On ω suc A
21 19 20 bitri A On ω suc A
22 fvex suc A V
23 ssdomg suc A V ω suc A ω suc A
24 22 23 ax-mp ω suc A ω suc A
25 21 24 sylbi A On ω suc A
26 alephordilem1 A On A suc A
27 infdif suc A dom card ω suc A A suc A suc A A suc A
28 18 25 26 27 syl3anc A On suc A A suc A
29 15 28 eqbrtrd A On x On | x A suc A
30 29 ensymd A On suc A x On | x A