Metamath Proof Explorer


Theorem alephsucdom

Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephsucdom B On A B A suc B

Proof

Step Hyp Ref Expression
1 alephordilem1 B On B suc B
2 domsdomtr A B B suc B A suc B
3 2 ex A B B suc B A suc B
4 1 3 syl5com B On A B A suc B
5 sdomdom A suc B A suc B
6 alephon suc B On
7 ondomen suc B On A suc B A dom card
8 6 7 mpan A suc B A dom card
9 cardid2 A dom card card A A
10 5 8 9 3syl A suc B card A A
11 10 ensymd A suc B A card A
12 alephnbtwn2 ¬ B card A card A suc B
13 12 imnani B card A ¬ card A suc B
14 ensdomtr card A A A suc B card A suc B
15 10 14 mpancom A suc B card A suc B
16 13 15 nsyl3 A suc B ¬ B card A
17 cardon card A On
18 alephon B On
19 domtriord card A On B On card A B ¬ B card A
20 17 18 19 mp2an card A B ¬ B card A
21 16 20 sylibr A suc B card A B
22 endomtr A card A card A B A B
23 11 21 22 syl2anc A suc B A B
24 4 23 impbid1 B On A B A suc B