Metamath Proof Explorer


Theorem alephsucpw

Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 or gchaleph2 .) (Contributed by NM, 27-Aug-2005)

Ref Expression
Assertion alephsucpw suc A 𝒫 A

Proof

Step Hyp Ref Expression
1 alephsucpw2 ¬ 𝒫 A suc A
2 fvex suc A V
3 fvex A V
4 3 pwex 𝒫 A V
5 domtri suc A V 𝒫 A V suc A 𝒫 A ¬ 𝒫 A suc A
6 2 4 5 mp2an suc A 𝒫 A ¬ 𝒫 A suc A
7 1 6 mpbir suc A 𝒫 A