Metamath Proof Explorer


Theorem alephval3

Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in Enderton p. 212 and definition of aleph in BellMachover p. 490 . (Contributed by NM, 16-Nov-2003)

Ref Expression
Assertion alephval3 A On A = x | card x = x ω x y A ¬ x = y

Proof

Step Hyp Ref Expression
1 alephcard card A = A
2 1 a1i A On card A = A
3 alephgeom A On ω A
4 3 biimpi A On ω A
5 alephord2i A On y A y A
6 elirr ¬ y y
7 eleq2 A = y y A y y
8 6 7 mtbiri A = y ¬ y A
9 8 con2i y A ¬ A = y
10 5 9 syl6 A On y A ¬ A = y
11 10 ralrimiv A On y A ¬ A = y
12 fvex A V
13 fveq2 x = A card x = card A
14 id x = A x = A
15 13 14 eqeq12d x = A card x = x card A = A
16 sseq2 x = A ω x ω A
17 eqeq1 x = A x = y A = y
18 17 notbid x = A ¬ x = y ¬ A = y
19 18 ralbidv x = A y A ¬ x = y y A ¬ A = y
20 15 16 19 3anbi123d x = A card x = x ω x y A ¬ x = y card A = A ω A y A ¬ A = y
21 12 20 elab A x | card x = x ω x y A ¬ x = y card A = A ω A y A ¬ A = y
22 2 4 11 21 syl3anbrc A On A x | card x = x ω x y A ¬ x = y
23 eleq1 z = y z A y A
24 alephord2 y On A On y A y A
25 24 bicomd y On A On y A y A
26 23 25 sylan9bbr y On A On z = y z A y A
27 26 biimpcd z A y On A On z = y y A
28 simpr y On A On z = y z = y
29 27 28 jca2 z A y On A On z = y y A z = y
30 29 exp4c z A y On A On z = y y A z = y
31 30 com3r A On z A y On z = y y A z = y
32 31 imp4b A On z A y On z = y y A z = y
33 32 reximdv2 A On z A y On z = y y A z = y
34 cardalephex ω z card z = z y On z = y
35 34 biimpac card z = z ω z y On z = y
36 33 35 impel A On z A card z = z ω z y A z = y
37 dfrex2 y A z = y ¬ y A ¬ z = y
38 36 37 sylib A On z A card z = z ω z ¬ y A ¬ z = y
39 nan A On z A ¬ card z = z ω z y A ¬ z = y A On z A card z = z ω z ¬ y A ¬ z = y
40 38 39 mpbir A On z A ¬ card z = z ω z y A ¬ z = y
41 40 ex A On z A ¬ card z = z ω z y A ¬ z = y
42 vex z V
43 fveq2 x = z card x = card z
44 id x = z x = z
45 43 44 eqeq12d x = z card x = x card z = z
46 sseq2 x = z ω x ω z
47 eqeq1 x = z x = y z = y
48 47 notbid x = z ¬ x = y ¬ z = y
49 48 ralbidv x = z y A ¬ x = y y A ¬ z = y
50 45 46 49 3anbi123d x = z card x = x ω x y A ¬ x = y card z = z ω z y A ¬ z = y
51 42 50 elab z x | card x = x ω x y A ¬ x = y card z = z ω z y A ¬ z = y
52 df-3an card z = z ω z y A ¬ z = y card z = z ω z y A ¬ z = y
53 51 52 bitri z x | card x = x ω x y A ¬ x = y card z = z ω z y A ¬ z = y
54 53 notbii ¬ z x | card x = x ω x y A ¬ x = y ¬ card z = z ω z y A ¬ z = y
55 41 54 syl6ibr A On z A ¬ z x | card x = x ω x y A ¬ x = y
56 55 ralrimiv A On z A ¬ z x | card x = x ω x y A ¬ x = y
57 cardon card x On
58 eleq1 card x = x card x On x On
59 57 58 mpbii card x = x x On
60 59 3ad2ant1 card x = x ω x y A ¬ x = y x On
61 60 abssi x | card x = x ω x y A ¬ x = y On
62 oneqmini x | card x = x ω x y A ¬ x = y On A x | card x = x ω x y A ¬ x = y z A ¬ z x | card x = x ω x y A ¬ x = y A = x | card x = x ω x y A ¬ x = y
63 61 62 ax-mp A x | card x = x ω x y A ¬ x = y z A ¬ z x | card x = x ω x y A ¬ x = y A = x | card x = x ω x y A ¬ x = y
64 22 56 63 syl2anc A On A = x | card x = x ω x y A ¬ x = y