Metamath Proof Explorer


Theorem alex

Description: Universal quantifier in terms of existential quantifier and negation. Dual of df-ex . See also the dual pair alnex / exnal . Theorem 19.6 of Margaris p. 89. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion alex x φ ¬ x ¬ φ

Proof

Step Hyp Ref Expression
1 notnotb φ ¬ ¬ φ
2 1 albii x φ x ¬ ¬ φ
3 alnex x ¬ ¬ φ ¬ x ¬ φ
4 2 3 bitri x φ ¬ x ¬ φ