Metamath Proof Explorer


Theorem alexn

Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion alexn x y ¬ φ ¬ x y φ

Proof

Step Hyp Ref Expression
1 exnal y ¬ φ ¬ y φ
2 1 albii x y ¬ φ x ¬ y φ
3 alnex x ¬ y φ ¬ x y φ
4 2 3 bitri x y ¬ φ ¬ x y φ