Step |
Hyp |
Ref |
Expression |
1 |
|
alexsubALT.1 |
|
2 |
1
|
alexsubALTlem1 |
|
3 |
1
|
alexsubALTlem4 |
|
4 |
|
velpw |
|
5 |
|
eleq2 |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
eluni |
|
8 |
|
ssel |
|
9 |
|
eleq2 |
|
10 |
|
tg2 |
|
11 |
10
|
ex |
|
12 |
9 11
|
syl6bi |
|
13 |
8 12
|
sylan9r |
|
14 |
13
|
3impia |
|
15 |
|
sseq2 |
|
16 |
15
|
rspcev |
|
17 |
16
|
ex |
|
18 |
17
|
3ad2ant3 |
|
19 |
18
|
anim2d |
|
20 |
19
|
reximdv |
|
21 |
14 20
|
syld |
|
22 |
21
|
3expia |
|
23 |
22
|
com23 |
|
24 |
23
|
impd |
|
25 |
24
|
exlimdv |
|
26 |
7 25
|
syl5bi |
|
27 |
26
|
3adant3 |
|
28 |
6 27
|
sylbid |
|
29 |
|
ssel |
|
30 |
|
elunii |
|
31 |
30
|
expcom |
|
32 |
6
|
biimprd |
|
33 |
31 32
|
sylan9r |
|
34 |
29 33
|
syl9r |
|
35 |
34
|
rexlimdva |
|
36 |
35
|
com23 |
|
37 |
36
|
impd |
|
38 |
37
|
rexlimdvw |
|
39 |
28 38
|
impbid |
|
40 |
|
elunirab |
|
41 |
39 40
|
bitr4di |
|
42 |
41
|
eqrdv |
|
43 |
|
ssrab2 |
|
44 |
|
fvex |
|
45 |
44
|
elpw2 |
|
46 |
43 45
|
mpbir |
|
47 |
|
unieq |
|
48 |
47
|
eqeq2d |
|
49 |
|
pweq |
|
50 |
49
|
ineq1d |
|
51 |
50
|
rexeqdv |
|
52 |
48 51
|
imbi12d |
|
53 |
52
|
rspcv |
|
54 |
46 53
|
ax-mp |
|
55 |
42 54
|
syl5com |
|
56 |
|
elfpw |
|
57 |
|
ssel |
|
58 |
|
sseq1 |
|
59 |
58
|
rexbidv |
|
60 |
59
|
elrab |
|
61 |
60
|
simprbi |
|
62 |
57 61
|
syl6 |
|
63 |
62
|
ralrimiv |
|
64 |
|
sseq2 |
|
65 |
64
|
ac6sfi |
|
66 |
65
|
ex |
|
67 |
63 66
|
syl5 |
|
68 |
67
|
adantl |
|
69 |
|
simprll |
|
70 |
|
frn |
|
71 |
69 70
|
syl |
|
72 |
|
simplr |
|
73 |
|
ffn |
|
74 |
|
dffn4 |
|
75 |
73 74
|
sylib |
|
76 |
75
|
adantr |
|
77 |
76
|
ad2antrl |
|
78 |
|
fodomfi |
|
79 |
72 77 78
|
syl2anc |
|
80 |
|
domfi |
|
81 |
72 79 80
|
syl2anc |
|
82 |
71 81
|
jca |
|
83 |
|
elin |
|
84 |
|
vex |
|
85 |
84
|
elpw2 |
|
86 |
85
|
anbi1i |
|
87 |
83 86
|
bitr2i |
|
88 |
82 87
|
sylib |
|
89 |
|
simprr |
|
90 |
|
uniiun |
|
91 |
|
simprlr |
|
92 |
|
ss2iun |
|
93 |
91 92
|
syl |
|
94 |
90 93
|
eqsstrid |
|
95 |
|
fniunfv |
|
96 |
69 73 95
|
3syl |
|
97 |
94 96
|
sseqtrd |
|
98 |
89 97
|
eqsstrd |
|
99 |
|
simpll2 |
|
100 |
71 99
|
sstrd |
|
101 |
|
uniss |
|
102 |
101 1
|
sseqtrrdi |
|
103 |
100 102
|
syl |
|
104 |
98 103
|
eqssd |
|
105 |
|
unieq |
|
106 |
105
|
eqeq2d |
|
107 |
106
|
rspcev |
|
108 |
88 104 107
|
syl2anc |
|
109 |
108
|
exp32 |
|
110 |
109
|
exlimdv |
|
111 |
68 110
|
syld |
|
112 |
111
|
ex |
|
113 |
112
|
com23 |
|
114 |
113
|
impd |
|
115 |
56 114
|
syl5bi |
|
116 |
115
|
rexlimdv |
|
117 |
55 116
|
syld |
|
118 |
117
|
3exp |
|
119 |
118
|
com34 |
|
120 |
119
|
com23 |
|
121 |
4 120
|
syl7bi |
|
122 |
121
|
ralrimdv |
|
123 |
|
fibas |
|
124 |
|
tgcl |
|
125 |
123 124
|
ax-mp |
|
126 |
|
eleq1 |
|
127 |
125 126
|
mpbiri |
|
128 |
122 127
|
jctild |
|
129 |
1
|
iscmp |
|
130 |
128 129
|
syl6ibr |
|
131 |
3 130
|
syld |
|
132 |
131
|
imp |
|
133 |
132
|
exlimiv |
|
134 |
2 133
|
impbii |
|