Metamath Proof Explorer


Theorem alexsubALT

Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 11-Feb-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis alexsubALT.1 X = J
Assertion alexsubALT J Comp x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d

Proof

Step Hyp Ref Expression
1 alexsubALT.1 X = J
2 1 alexsubALTlem1 J Comp x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d
3 1 alexsubALTlem4 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x X = a b 𝒫 a Fin X = b
4 velpw c 𝒫 J c J
5 eleq2 X = c t X t c
6 5 3ad2ant3 J = topGen fi x c J X = c t X t c
7 eluni t c w t w w c
8 ssel c J w c w J
9 eleq2 J = topGen fi x w J w topGen fi x
10 tg2 w topGen fi x t w y fi x t y y w
11 10 ex w topGen fi x t w y fi x t y y w
12 9 11 syl6bi J = topGen fi x w J t w y fi x t y y w
13 8 12 sylan9r J = topGen fi x c J w c t w y fi x t y y w
14 13 3impia J = topGen fi x c J w c t w y fi x t y y w
15 sseq2 z = w y z y w
16 15 rspcev w c y w z c y z
17 16 ex w c y w z c y z
18 17 3ad2ant3 J = topGen fi x c J w c y w z c y z
19 18 anim2d J = topGen fi x c J w c t y y w t y z c y z
20 19 reximdv J = topGen fi x c J w c y fi x t y y w y fi x t y z c y z
21 14 20 syld J = topGen fi x c J w c t w y fi x t y z c y z
22 21 3expia J = topGen fi x c J w c t w y fi x t y z c y z
23 22 com23 J = topGen fi x c J t w w c y fi x t y z c y z
24 23 impd J = topGen fi x c J t w w c y fi x t y z c y z
25 24 exlimdv J = topGen fi x c J w t w w c y fi x t y z c y z
26 7 25 syl5bi J = topGen fi x c J t c y fi x t y z c y z
27 26 3adant3 J = topGen fi x c J X = c t c y fi x t y z c y z
28 6 27 sylbid J = topGen fi x c J X = c t X y fi x t y z c y z
29 ssel y z t y t z
30 elunii t z z c t c
31 30 expcom z c t z t c
32 6 biimprd J = topGen fi x c J X = c t c t X
33 31 32 sylan9r J = topGen fi x c J X = c z c t z t X
34 29 33 syl9r J = topGen fi x c J X = c z c y z t y t X
35 34 rexlimdva J = topGen fi x c J X = c z c y z t y t X
36 35 com23 J = topGen fi x c J X = c t y z c y z t X
37 36 impd J = topGen fi x c J X = c t y z c y z t X
38 37 rexlimdvw J = topGen fi x c J X = c y fi x t y z c y z t X
39 28 38 impbid J = topGen fi x c J X = c t X y fi x t y z c y z
40 elunirab t y fi x | z c y z y fi x t y z c y z
41 39 40 bitr4di J = topGen fi x c J X = c t X t y fi x | z c y z
42 41 eqrdv J = topGen fi x c J X = c X = y fi x | z c y z
43 ssrab2 y fi x | z c y z fi x
44 fvex fi x V
45 44 elpw2 y fi x | z c y z 𝒫 fi x y fi x | z c y z fi x
46 43 45 mpbir y fi x | z c y z 𝒫 fi x
47 unieq a = y fi x | z c y z a = y fi x | z c y z
48 47 eqeq2d a = y fi x | z c y z X = a X = y fi x | z c y z
49 pweq a = y fi x | z c y z 𝒫 a = 𝒫 y fi x | z c y z
50 49 ineq1d a = y fi x | z c y z 𝒫 a Fin = 𝒫 y fi x | z c y z Fin
51 50 rexeqdv a = y fi x | z c y z b 𝒫 a Fin X = b b 𝒫 y fi x | z c y z Fin X = b
52 48 51 imbi12d a = y fi x | z c y z X = a b 𝒫 a Fin X = b X = y fi x | z c y z b 𝒫 y fi x | z c y z Fin X = b
53 52 rspcv y fi x | z c y z 𝒫 fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b X = y fi x | z c y z b 𝒫 y fi x | z c y z Fin X = b
54 46 53 ax-mp a 𝒫 fi x X = a b 𝒫 a Fin X = b X = y fi x | z c y z b 𝒫 y fi x | z c y z Fin X = b
55 42 54 syl5com J = topGen fi x c J X = c a 𝒫 fi x X = a b 𝒫 a Fin X = b b 𝒫 y fi x | z c y z Fin X = b
56 elfpw b 𝒫 y fi x | z c y z Fin b y fi x | z c y z b Fin
57 ssel b y fi x | z c y z t b t y fi x | z c y z
58 sseq1 y = t y z t z
59 58 rexbidv y = t z c y z z c t z
60 59 elrab t y fi x | z c y z t fi x z c t z
61 60 simprbi t y fi x | z c y z z c t z
62 57 61 syl6 b y fi x | z c y z t b z c t z
63 62 ralrimiv b y fi x | z c y z t b z c t z
64 sseq2 z = f t t z t f t
65 64 ac6sfi b Fin t b z c t z f f : b c t b t f t
66 65 ex b Fin t b z c t z f f : b c t b t f t
67 63 66 syl5 b Fin b y fi x | z c y z f f : b c t b t f t
68 67 adantl J = topGen fi x c J X = c b Fin b y fi x | z c y z f f : b c t b t f t
69 simprll J = topGen fi x c J X = c b Fin f : b c t b t f t X = b f : b c
70 frn f : b c ran f c
71 69 70 syl J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f c
72 simplr J = topGen fi x c J X = c b Fin f : b c t b t f t X = b b Fin
73 ffn f : b c f Fn b
74 dffn4 f Fn b f : b onto ran f
75 73 74 sylib f : b c f : b onto ran f
76 75 adantr f : b c t b t f t f : b onto ran f
77 76 ad2antrl J = topGen fi x c J X = c b Fin f : b c t b t f t X = b f : b onto ran f
78 fodomfi b Fin f : b onto ran f ran f b
79 72 77 78 syl2anc J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f b
80 domfi b Fin ran f b ran f Fin
81 72 79 80 syl2anc J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f Fin
82 71 81 jca J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f c ran f Fin
83 elin ran f 𝒫 c Fin ran f 𝒫 c ran f Fin
84 vex c V
85 84 elpw2 ran f 𝒫 c ran f c
86 85 anbi1i ran f 𝒫 c ran f Fin ran f c ran f Fin
87 83 86 bitr2i ran f c ran f Fin ran f 𝒫 c Fin
88 82 87 sylib J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f 𝒫 c Fin
89 simprr J = topGen fi x c J X = c b Fin f : b c t b t f t X = b X = b
90 uniiun b = t b t
91 simprlr J = topGen fi x c J X = c b Fin f : b c t b t f t X = b t b t f t
92 ss2iun t b t f t t b t t b f t
93 91 92 syl J = topGen fi x c J X = c b Fin f : b c t b t f t X = b t b t t b f t
94 90 93 eqsstrid J = topGen fi x c J X = c b Fin f : b c t b t f t X = b b t b f t
95 fniunfv f Fn b t b f t = ran f
96 69 73 95 3syl J = topGen fi x c J X = c b Fin f : b c t b t f t X = b t b f t = ran f
97 94 96 sseqtrd J = topGen fi x c J X = c b Fin f : b c t b t f t X = b b ran f
98 89 97 eqsstrd J = topGen fi x c J X = c b Fin f : b c t b t f t X = b X ran f
99 simpll2 J = topGen fi x c J X = c b Fin f : b c t b t f t X = b c J
100 71 99 sstrd J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f J
101 uniss ran f J ran f J
102 101 1 sseqtrrdi ran f J ran f X
103 100 102 syl J = topGen fi x c J X = c b Fin f : b c t b t f t X = b ran f X
104 98 103 eqssd J = topGen fi x c J X = c b Fin f : b c t b t f t X = b X = ran f
105 unieq d = ran f d = ran f
106 105 eqeq2d d = ran f X = d X = ran f
107 106 rspcev ran f 𝒫 c Fin X = ran f d 𝒫 c Fin X = d
108 88 104 107 syl2anc J = topGen fi x c J X = c b Fin f : b c t b t f t X = b d 𝒫 c Fin X = d
109 108 exp32 J = topGen fi x c J X = c b Fin f : b c t b t f t X = b d 𝒫 c Fin X = d
110 109 exlimdv J = topGen fi x c J X = c b Fin f f : b c t b t f t X = b d 𝒫 c Fin X = d
111 68 110 syld J = topGen fi x c J X = c b Fin b y fi x | z c y z X = b d 𝒫 c Fin X = d
112 111 ex J = topGen fi x c J X = c b Fin b y fi x | z c y z X = b d 𝒫 c Fin X = d
113 112 com23 J = topGen fi x c J X = c b y fi x | z c y z b Fin X = b d 𝒫 c Fin X = d
114 113 impd J = topGen fi x c J X = c b y fi x | z c y z b Fin X = b d 𝒫 c Fin X = d
115 56 114 syl5bi J = topGen fi x c J X = c b 𝒫 y fi x | z c y z Fin X = b d 𝒫 c Fin X = d
116 115 rexlimdv J = topGen fi x c J X = c b 𝒫 y fi x | z c y z Fin X = b d 𝒫 c Fin X = d
117 55 116 syld J = topGen fi x c J X = c a 𝒫 fi x X = a b 𝒫 a Fin X = b d 𝒫 c Fin X = d
118 117 3exp J = topGen fi x c J X = c a 𝒫 fi x X = a b 𝒫 a Fin X = b d 𝒫 c Fin X = d
119 118 com34 J = topGen fi x c J a 𝒫 fi x X = a b 𝒫 a Fin X = b X = c d 𝒫 c Fin X = d
120 119 com23 J = topGen fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b c J X = c d 𝒫 c Fin X = d
121 4 120 syl7bi J = topGen fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b c 𝒫 J X = c d 𝒫 c Fin X = d
122 121 ralrimdv J = topGen fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b c 𝒫 J X = c d 𝒫 c Fin X = d
123 fibas fi x TopBases
124 tgcl fi x TopBases topGen fi x Top
125 123 124 ax-mp topGen fi x Top
126 eleq1 J = topGen fi x J Top topGen fi x Top
127 125 126 mpbiri J = topGen fi x J Top
128 122 127 jctild J = topGen fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b J Top c 𝒫 J X = c d 𝒫 c Fin X = d
129 1 iscmp J Comp J Top c 𝒫 J X = c d 𝒫 c Fin X = d
130 128 129 syl6ibr J = topGen fi x a 𝒫 fi x X = a b 𝒫 a Fin X = b J Comp
131 3 130 syld J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d J Comp
132 131 imp J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d J Comp
133 132 exlimiv x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d J Comp
134 2 133 impbii J Comp x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d