Step |
Hyp |
Ref |
Expression |
1 |
|
alexsubALT.1 |
|
2 |
|
dfrex2 |
|
3 |
2
|
ralbii |
|
4 |
|
ralnex |
|
5 |
3 4
|
bitr2i |
|
6 |
|
elin |
|
7 |
|
elpwi |
|
8 |
7
|
adantr |
|
9 |
|
uncom |
|
10 |
8 9
|
sseqtrdi |
|
11 |
|
ssundif |
|
12 |
10 11
|
sylib |
|
13 |
|
diffi |
|
14 |
13
|
adantl |
|
15 |
12 14
|
jca |
|
16 |
6 15
|
sylbi |
|
17 |
16
|
adantr |
|
18 |
17
|
ad2antll |
|
19 |
|
elin |
|
20 |
|
vex |
|
21 |
20
|
elpw2 |
|
22 |
21
|
anbi1i |
|
23 |
19 22
|
bitr2i |
|
24 |
18 23
|
sylib |
|
25 |
|
simprrr |
|
26 |
|
eldif |
|
27 |
26
|
simplbi2 |
|
28 |
|
elun |
|
29 |
|
orcom |
|
30 |
28 29
|
bitr4i |
|
31 |
|
df-or |
|
32 |
30 31
|
bitr2i |
|
33 |
27 32
|
sylib |
|
34 |
33
|
ssriv |
|
35 |
|
uniss |
|
36 |
34 35
|
mp1i |
|
37 |
|
uniun |
|
38 |
|
unisnv |
|
39 |
38
|
uneq2i |
|
40 |
37 39
|
eqtri |
|
41 |
36 40
|
sseqtrdi |
|
42 |
25 41
|
eqsstrd |
|
43 |
|
difss |
|
44 |
43
|
unissi |
|
45 |
|
sseq2 |
|
46 |
44 45
|
mpbiri |
|
47 |
46
|
adantl |
|
48 |
47
|
ad2antll |
|
49 |
|
elinel1 |
|
50 |
49
|
elpwid |
|
51 |
50
|
ad3antrrr |
|
52 |
51
|
ad2antlr |
|
53 |
|
simprl |
|
54 |
52 53
|
sseldd |
|
55 |
|
elssuni |
|
56 |
54 55
|
syl |
|
57 |
|
fibas |
|
58 |
|
unitg |
|
59 |
57 58
|
mp1i |
|
60 |
|
unieq |
|
61 |
60
|
3ad2ant1 |
|
62 |
61
|
ad3antrrr |
|
63 |
|
vex |
|
64 |
|
fiuni |
|
65 |
63 64
|
mp1i |
|
66 |
59 62 65
|
3eqtr4rd |
|
67 |
66 1
|
eqtr4di |
|
68 |
56 67
|
sseqtrd |
|
69 |
48 68
|
unssd |
|
70 |
42 69
|
eqssd |
|
71 |
|
unieq |
|
72 |
71
|
uneq1d |
|
73 |
72
|
rspceeqv |
|
74 |
24 70 73
|
syl2anc |
|
75 |
74
|
expr |
|
76 |
75
|
expd |
|
77 |
76
|
rexlimdv |
|
78 |
77
|
ralimdva |
|
79 |
|
elinel2 |
|
80 |
79
|
adantr |
|
81 |
|
unieq |
|
82 |
81
|
uneq1d |
|
83 |
82
|
eqeq2d |
|
84 |
83
|
ac6sfi |
|
85 |
84
|
ex |
|
86 |
80 85
|
syl |
|
87 |
86
|
adantr |
|
88 |
87
|
ad2antrl |
|
89 |
|
ffvelcdm |
|
90 |
|
elin |
|
91 |
|
elpwi |
|
92 |
91
|
adantr |
|
93 |
90 92
|
sylbi |
|
94 |
89 93
|
syl |
|
95 |
94
|
ralrimiva |
|
96 |
|
iunss |
|
97 |
95 96
|
sylibr |
|
98 |
97
|
ad2antrl |
|
99 |
|
simplrr |
|
100 |
99
|
snssd |
|
101 |
98 100
|
unssd |
|
102 |
89
|
elin2d |
|
103 |
102
|
ralrimiva |
|
104 |
|
iunfi |
|
105 |
80 103 104
|
syl2an |
|
106 |
105
|
ad4ant14 |
|
107 |
106
|
ad2ant2lr |
|
108 |
|
snfi |
|
109 |
|
unfi |
|
110 |
107 108 109
|
sylancl |
|
111 |
101 110
|
jca |
|
112 |
|
elin |
|
113 |
20
|
elpw2 |
|
114 |
113
|
anbi1i |
|
115 |
112 114
|
bitr2i |
|
116 |
111 115
|
sylib |
|
117 |
|
ralnex |
|
118 |
117
|
imbi2i |
|
119 |
118
|
albii |
|
120 |
|
alinexa |
|
121 |
119 120
|
bitr2i |
|
122 |
|
fveq2 |
|
123 |
122
|
unieqd |
|
124 |
|
id |
|
125 |
123 124
|
uneq12d |
|
126 |
125
|
eqeq2d |
|
127 |
126
|
rspcv |
|
128 |
|
eleq2 |
|
129 |
128
|
biimpd |
|
130 |
|
elun |
|
131 |
|
eluni |
|
132 |
131
|
orbi1i |
|
133 |
|
df-or |
|
134 |
|
alinexa |
|
135 |
134
|
imbi1i |
|
136 |
133 135
|
bitr4i |
|
137 |
130 132 136
|
3bitri |
|
138 |
|
eleq2 |
|
139 |
|
eleq1w |
|
140 |
139
|
notbid |
|
141 |
140
|
ralbidv |
|
142 |
138 141
|
imbi12d |
|
143 |
142
|
spvv |
|
144 |
122
|
eleq2d |
|
145 |
144
|
notbid |
|
146 |
145
|
rspcv |
|
147 |
143 146
|
syl9r |
|
148 |
147
|
alrimdv |
|
149 |
148
|
imim1d |
|
150 |
137 149
|
biimtrid |
|
151 |
150
|
a1dd |
|
152 |
129 151
|
syl9r |
|
153 |
127 152
|
syld |
|
154 |
153
|
com14 |
|
155 |
154
|
imp31 |
|
156 |
155
|
com23 |
|
157 |
156
|
ralrimdv |
|
158 |
|
vex |
|
159 |
158
|
elint2 |
|
160 |
157 159
|
syl6ibr |
|
161 |
|
eleq2 |
|
162 |
161
|
ad2antrr |
|
163 |
160 162
|
sylibrd |
|
164 |
121 163
|
biimtrid |
|
165 |
164
|
orrd |
|
166 |
165
|
ex |
|
167 |
|
orc |
|
168 |
167
|
anim2i |
|
169 |
168
|
eximi |
|
170 |
|
equid |
|
171 |
|
vex |
|
172 |
|
equequ1 |
|
173 |
138 172
|
anbi12d |
|
174 |
171 173
|
spcev |
|
175 |
170 174
|
mpan2 |
|
176 |
|
olc |
|
177 |
176
|
anim2i |
|
178 |
177
|
eximi |
|
179 |
175 178
|
syl |
|
180 |
169 179
|
jaoi |
|
181 |
|
eluni |
|
182 |
|
elun |
|
183 |
|
eliun |
|
184 |
|
velsn |
|
185 |
183 184
|
orbi12i |
|
186 |
182 185
|
bitri |
|
187 |
186
|
anbi2i |
|
188 |
187
|
exbii |
|
189 |
181 188
|
bitr2i |
|
190 |
180 189
|
sylib |
|
191 |
166 190
|
syl6 |
|
192 |
191
|
ad5ant25 |
|
193 |
192
|
ad2ant2l |
|
194 |
193
|
ssrdv |
|
195 |
|
elun |
|
196 |
|
eliun |
|
197 |
|
velsn |
|
198 |
196 197
|
orbi12i |
|
199 |
195 198
|
bitri |
|
200 |
|
nfra1 |
|
201 |
|
nfv |
|
202 |
|
rsp |
|
203 |
|
eqimss2 |
|
204 |
|
elssuni |
|
205 |
|
ssun3 |
|
206 |
204 205
|
syl |
|
207 |
|
sstr |
|
208 |
207
|
expcom |
|
209 |
203 206 208
|
syl2im |
|
210 |
202 209
|
syl6 |
|
211 |
200 201 210
|
rexlimd |
|
212 |
211
|
ad2antll |
|
213 |
|
elpwi |
|
214 |
213
|
ad2antrl |
|
215 |
214
|
ad2antrr |
|
216 |
215 99
|
sseldd |
|
217 |
|
elssuni |
|
218 |
216 217
|
syl |
|
219 |
57 58
|
ax-mp |
|
220 |
60 219
|
eqtr2di |
|
221 |
220 1
|
eqtr4di |
|
222 |
221
|
3ad2ant1 |
|
223 |
222
|
ad3antrrr |
|
224 |
218 223
|
sseqtrd |
|
225 |
|
sseq1 |
|
226 |
224 225
|
syl5ibrcom |
|
227 |
212 226
|
jaod |
|
228 |
199 227
|
biimtrid |
|
229 |
228
|
ralrimiv |
|
230 |
|
unissb |
|
231 |
229 230
|
sylibr |
|
232 |
194 231
|
eqssd |
|
233 |
|
unieq |
|
234 |
233
|
rspceeqv |
|
235 |
116 232 234
|
syl2anc |
|
236 |
235
|
ex |
|
237 |
236
|
exlimdv |
|
238 |
78 88 237
|
3syld |
|
239 |
5 238
|
biimtrid |
|
240 |
|
dfrex2 |
|
241 |
239 240
|
imbitrdi |
|
242 |
241
|
con4d |
|
243 |
242
|
exp32 |
|
244 |
243
|
com24 |
|
245 |
244
|
exp32 |
|
246 |
245
|
imp45 |
|
247 |
246
|
imp31 |
|