Metamath Proof Explorer


Theorem alexsubALTlem4

Description: Lemma for alexsubALT . If any cover taken from a subbase has a finite subcover, any cover taken from the corresponding base has a finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010) (Revised by Mario Carneiro, 14-Dec-2013)

Ref Expression
Hypothesis alexsubALT.1 X = J
Assertion alexsubALTlem4 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x X = a b 𝒫 a Fin X = b

Proof

Step Hyp Ref Expression
1 alexsubALT.1 X = J
2 ralnex b 𝒫 a Fin ¬ X = b ¬ b 𝒫 a Fin X = b
3 1 alexsubALTlem2 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v
4 elun u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u
5 sseq2 z = u a z a u
6 pweq z = u 𝒫 z = 𝒫 u
7 6 ineq1d z = u 𝒫 z Fin = 𝒫 u Fin
8 7 raleqdv z = u b 𝒫 z Fin ¬ X = b b 𝒫 u Fin ¬ X = b
9 5 8 anbi12d z = u a z b 𝒫 z Fin ¬ X = b a u b 𝒫 u Fin ¬ X = b
10 9 elrab u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b
11 velsn u u =
12 10 11 orbi12i u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b u =
13 4 12 bitri u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b u =
14 ralnex v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
15 simprrl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b a u
16 15 unissd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b a u
17 sseq1 X = a X u a u
18 16 17 syl5ibrcom J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b X = a X u
19 vex x V
20 inss1 x u x
21 19 20 elpwi2 x u 𝒫 x
22 unieq c = x u c = x u
23 22 eqeq2d c = x u X = c X = x u
24 pweq c = x u 𝒫 c = 𝒫 x u
25 24 ineq1d c = x u 𝒫 c Fin = 𝒫 x u Fin
26 25 rexeqdv c = x u d 𝒫 c Fin X = d d 𝒫 x u Fin X = d
27 23 26 imbi12d c = x u X = c d 𝒫 c Fin X = d X = x u d 𝒫 x u Fin X = d
28 27 rspccv c 𝒫 x X = c d 𝒫 c Fin X = d x u 𝒫 x X = x u d 𝒫 x u Fin X = d
29 21 28 mpi c 𝒫 x X = c d 𝒫 c Fin X = d X = x u d 𝒫 x u Fin X = d
30 inss2 x u u
31 sstr d x u x u u d u
32 30 31 mpan2 d x u d u
33 32 anim1i d x u d Fin d u d Fin
34 elfpw d 𝒫 x u Fin d x u d Fin
35 elfpw d 𝒫 u Fin d u d Fin
36 33 34 35 3imtr4i d 𝒫 x u Fin d 𝒫 u Fin
37 36 anim1i d 𝒫 x u Fin X = d d 𝒫 u Fin X = d
38 37 reximi2 d 𝒫 x u Fin X = d d 𝒫 u Fin X = d
39 29 38 syl6 c 𝒫 x X = c d 𝒫 c Fin X = d X = x u d 𝒫 u Fin X = d
40 unieq d = b d = b
41 40 eqeq2d d = b X = d X = b
42 41 cbvrexvw d 𝒫 u Fin X = d b 𝒫 u Fin X = b
43 39 42 syl6ib c 𝒫 x X = c d 𝒫 c Fin X = d X = x u b 𝒫 u Fin X = b
44 dfrex2 b 𝒫 u Fin X = b ¬ b 𝒫 u Fin ¬ X = b
45 43 44 syl6ib c 𝒫 x X = c d 𝒫 c Fin X = d X = x u ¬ b 𝒫 u Fin ¬ X = b
46 45 con2d c 𝒫 x X = c d 𝒫 c Fin X = d b 𝒫 u Fin ¬ X = b ¬ X = x u
47 46 a1d c 𝒫 x X = c d 𝒫 c Fin X = d a u b 𝒫 u Fin ¬ X = b ¬ X = x u
48 47 3ad2ant2 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ X = x u
49 48 adantr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ X = x u
50 49 impd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ X = x u
51 50 impr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ X = x u
52 20 unissi x u x
53 fiuni x V x = fi x
54 53 elv x = fi x
55 fibas fi x TopBases
56 unitg fi x TopBases topGen fi x = fi x
57 55 56 ax-mp topGen fi x = fi x
58 54 57 eqtr4i x = topGen fi x
59 unieq J = topGen fi x J = topGen fi x
60 58 59 eqtr4id J = topGen fi x x = J
61 60 1 eqtr4di J = topGen fi x x = X
62 61 3ad2ant1 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x x = X
63 62 adantr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b x = X
64 52 63 sseqtrid J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b x u X
65 eqcom X = x u x u = X
66 eqss x u = X x u X X x u
67 66 baib x u X x u = X X x u
68 65 67 syl5bb x u X X = x u X x u
69 64 68 syl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b X = x u X x u
70 51 69 mtbid J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ X x u
71 sstr2 X u u x u X x u
72 71 con3rr3 ¬ X x u X u ¬ u x u
73 70 72 syl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b X u ¬ u x u
74 nss ¬ u x u y y u ¬ y x u
75 df-rex y u ¬ y x u y y u ¬ y x u
76 74 75 bitr4i ¬ u x u y u ¬ y x u
77 eluni2 y u w u y w
78 elpwi u 𝒫 fi x u fi x
79 78 sseld u 𝒫 fi x w u w fi x
80 79 ad2antrl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u w fi x
81 elfi w V x V w fi x t 𝒫 x Fin w = t
82 81 el2v w fi x t 𝒫 x Fin w = t
83 80 82 syl6ib J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t
84 1 alexsubALTlem3 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n
85 78 adantr u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b u fi x
86 85 ad4antlr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u fi x
87 ssfii x V x fi x
88 87 elv x fi x
89 elinel1 t 𝒫 x Fin t 𝒫 x
90 89 elpwid t 𝒫 x Fin t x
91 90 ad2antrr t 𝒫 x Fin w = t y w ¬ y x u t x
92 91 ad2antlr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n t x
93 simprl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n s t
94 92 93 sseldd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n s x
95 88 94 sselid J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n s fi x
96 95 snssd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n s fi x
97 86 96 unssd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u s fi x
98 fvex fi x V
99 98 elpw2 u s 𝒫 fi x u s fi x
100 97 99 sylibr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u s 𝒫 fi x
101 simprl u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b a u
102 101 ad4antlr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n a u
103 ssun1 u u s
104 102 103 sstrdi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n a u s
105 unieq n = b n = b
106 105 eqeq2d n = b X = n X = b
107 106 notbid n = b ¬ X = n ¬ X = b
108 107 cbvralvw n 𝒫 u s Fin ¬ X = n b 𝒫 u s Fin ¬ X = b
109 108 biimpi n 𝒫 u s Fin ¬ X = n b 𝒫 u s Fin ¬ X = b
110 109 ad2antll J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n b 𝒫 u s Fin ¬ X = b
111 100 104 110 jca32 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u s 𝒫 fi x a u s b 𝒫 u s Fin ¬ X = b
112 sseq2 z = u s a z a u s
113 pweq z = u s 𝒫 z = 𝒫 u s
114 113 ineq1d z = u s 𝒫 z Fin = 𝒫 u s Fin
115 114 raleqdv z = u s b 𝒫 z Fin ¬ X = b b 𝒫 u s Fin ¬ X = b
116 112 115 anbi12d z = u s a z b 𝒫 z Fin ¬ X = b a u s b 𝒫 u s Fin ¬ X = b
117 116 elrab u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u s 𝒫 fi x a u s b 𝒫 u s Fin ¬ X = b
118 111 117 sylibr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
119 elun1 u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
120 118 119 syl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
121 vsnid s s
122 elun2 s s s u s
123 121 122 ax-mp s u s
124 intss1 s t t s
125 sseq1 w = t w s t s
126 124 125 syl5ibrcom s t w = t w s
127 126 impcom w = t s t w s
128 127 ad4ant24 t 𝒫 x Fin w = t y w s t w s
129 128 adantl w u t 𝒫 x Fin w = t y w s t w s
130 129 adantrrr w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n w s
131 130 adantll J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n w s
132 simprlr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n y w
133 131 132 sseldd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n y s
134 90 ad2antrr t 𝒫 x Fin w = t y w t x
135 134 ad2antrl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n t x
136 simprrl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n s t
137 135 136 sseldd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n s x
138 elin s x u s x s u
139 elunii y s s x u y x u
140 139 ex y s s x u y x u
141 138 140 syl5bir y s s x s u y x u
142 141 expd y s s x s u y x u
143 133 137 142 sylc J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n s u y x u
144 143 con3d J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n ¬ y x u ¬ s u
145 144 expr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w s t n 𝒫 u s Fin ¬ X = n ¬ y x u ¬ s u
146 145 com23 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n ¬ s u
147 146 exp32 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n ¬ s u
148 147 imp55 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n ¬ s u
149 vex s V
150 eleq1w v = s v u s s u s
151 elequ1 v = s v u s u
152 151 notbid v = s ¬ v u ¬ s u
153 150 152 anbi12d v = s v u s ¬ v u s u s ¬ s u
154 149 153 spcev s u s ¬ s u v v u s ¬ v u
155 123 148 154 sylancr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n v v u s ¬ v u
156 nss ¬ u s u v v u s ¬ v u
157 155 156 sylibr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n ¬ u s u
158 eqimss2 u = u s u s u
159 158 necon3bi ¬ u s u u u s
160 157 159 syl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u u s
161 160 103 jctil J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u u s u u s
162 df-pss u u s u u s u u s
163 161 162 sylibr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n u u s
164 psseq2 v = u s u v u u s
165 164 rspcev u s z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u u s v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
166 120 163 165 syl2anc J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u s t n 𝒫 u s Fin ¬ X = n v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
167 84 166 rexlimddv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
168 167 exp45 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
169 168 expd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
170 169 rexlimdv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
171 170 ex J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u t 𝒫 x Fin w = t y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
172 83 171 mpdd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
173 172 rexlimdv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b w u y w ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
174 77 173 syl5bi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b y u ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
175 174 rexlimdv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b y u ¬ y x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
176 76 175 syl5bi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ u x u v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
177 18 73 176 3syld J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b X = a v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v
178 177 con3d J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b ¬ v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b u v ¬ X = a
179 14 178 syl5bi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
180 179 ex J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
181 180 adantr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
182 ssun1 z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
183 eqimss2 z = a a z
184 183 biantrurd z = a b 𝒫 z Fin ¬ X = b a z b 𝒫 z Fin ¬ X = b
185 pweq z = a 𝒫 z = 𝒫 a
186 185 ineq1d z = a 𝒫 z Fin = 𝒫 a Fin
187 186 raleqdv z = a b 𝒫 z Fin ¬ X = b b 𝒫 a Fin ¬ X = b
188 184 187 bitr3d z = a a z b 𝒫 z Fin ¬ X = b b 𝒫 a Fin ¬ X = b
189 simpll3 J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = a 𝒫 fi x
190 simplr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = b 𝒫 a Fin ¬ X = b
191 188 189 190 elrabd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = a z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
192 182 191 sselid J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = a z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b
193 psseq2 v = a u v u a
194 193 notbid v = a ¬ u v ¬ u a
195 194 rspcv a z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ u a
196 192 195 syl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ u a
197 id a = a =
198 0elpw 𝒫 a
199 0fin Fin
200 198 199 elini 𝒫 a Fin
201 197 200 eqeltrdi a = a 𝒫 a Fin
202 unieq b = a b = a
203 202 eqeq2d b = a X = b X = a
204 203 notbid b = a ¬ X = b ¬ X = a
205 204 rspccv b 𝒫 a Fin ¬ X = b a 𝒫 a Fin ¬ X = a
206 201 205 syl5 b 𝒫 a Fin ¬ X = b a = ¬ X = a
207 206 necon2ad b 𝒫 a Fin ¬ X = b X = a a
208 207 ad2antlr J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = X = a a
209 psseq1 u = u a a
210 209 adantl J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = u a a
211 0pss a a
212 210 211 bitrdi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = u a a
213 208 212 sylibrd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = X = a u a
214 196 213 nsyld J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
215 214 ex J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u = v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
216 181 215 jaod J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u 𝒫 fi x a u b 𝒫 u Fin ¬ X = b u = v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
217 13 216 syl5bi J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
218 217 rexlimdv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b u z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b v z 𝒫 fi x | a z b 𝒫 z Fin ¬ X = b ¬ u v ¬ X = a
219 3 218 mpd J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b ¬ X = a
220 219 ex J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x b 𝒫 a Fin ¬ X = b ¬ X = a
221 2 220 syl5bir J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x ¬ b 𝒫 a Fin X = b ¬ X = a
222 221 con4d J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x X = a b 𝒫 a Fin X = b
223 222 3exp J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x X = a b 𝒫 a Fin X = b
224 223 ralrimdv J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d a 𝒫 fi x X = a b 𝒫 a Fin X = b