Step |
Hyp |
Ref |
Expression |
1 |
|
alexsub.1 |
|
2 |
|
alexsub.2 |
|
3 |
|
alexsub.3 |
|
4 |
|
alexsub.4 |
|
5 |
|
alexsub.5 |
|
6 |
|
alexsub.6 |
|
7 |
|
eldif |
|
8 |
3
|
eleq2d |
|
9 |
8
|
anbi1d |
|
10 |
9
|
biimpa |
|
11 |
10
|
adantlr |
|
12 |
|
tg2 |
|
13 |
11 12
|
syl |
|
14 |
|
ufilfil |
|
15 |
5 14
|
syl |
|
16 |
15
|
ad3antrrr |
|
17 |
5
|
elfvexd |
|
18 |
2 17
|
eqeltrrd |
|
19 |
|
uniexb |
|
20 |
18 19
|
sylibr |
|
21 |
|
elfi2 |
|
22 |
20 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
15
|
ad2antrr |
|
25 |
|
simplrr |
|
26 |
|
intss1 |
|
27 |
26
|
adantl |
|
28 |
|
simplr |
|
29 |
27 28
|
sseldd |
|
30 |
29
|
ad2antlr |
|
31 |
|
eldifsn |
|
32 |
31
|
simplbi |
|
33 |
32
|
ad2antrl |
|
34 |
|
elfpw |
|
35 |
34
|
simplbi |
|
36 |
33 35
|
syl |
|
37 |
36
|
sselda |
|
38 |
37
|
anasss |
|
39 |
38
|
anim1i |
|
40 |
|
eldif |
|
41 |
39 40
|
sylibr |
|
42 |
|
elunii |
|
43 |
30 41 42
|
syl2anc |
|
44 |
43
|
ex |
|
45 |
25 44
|
mt3d |
|
46 |
45
|
expr |
|
47 |
46
|
ssrdv |
|
48 |
|
eldifsni |
|
49 |
48
|
ad2antrl |
|
50 |
|
elinel2 |
|
51 |
33 50
|
syl |
|
52 |
|
elfir |
|
53 |
24 47 49 51 52
|
syl13anc |
|
54 |
|
filfi |
|
55 |
24 54
|
syl |
|
56 |
53 55
|
eleqtrd |
|
57 |
56
|
expr |
|
58 |
|
eleq2 |
|
59 |
|
eleq1 |
|
60 |
58 59
|
imbi12d |
|
61 |
57 60
|
syl5ibrcom |
|
62 |
61
|
rexlimdva |
|
63 |
23 62
|
sylbid |
|
64 |
63
|
imp32 |
|
65 |
64
|
adantrrr |
|
66 |
65
|
adantlr |
|
67 |
|
elssuni |
|
68 |
67
|
ad2antrl |
|
69 |
|
fibas |
|
70 |
|
tgtopon |
|
71 |
69 70
|
ax-mp |
|
72 |
3 71
|
eqeltrdi |
|
73 |
|
fiuni |
|
74 |
20 73
|
syl |
|
75 |
2 74
|
eqtrd |
|
76 |
75
|
fveq2d |
|
77 |
72 76
|
eleqtrrd |
|
78 |
|
toponuni |
|
79 |
77 78
|
syl |
|
80 |
79
|
ad2antrr |
|
81 |
68 80
|
sseqtrrd |
|
82 |
81
|
adantr |
|
83 |
|
simprrr |
|
84 |
|
filss |
|
85 |
16 66 82 83 84
|
syl13anc |
|
86 |
13 85
|
rexlimddv |
|
87 |
86
|
expr |
|
88 |
87
|
ralrimiva |
|
89 |
88
|
expr |
|
90 |
89
|
imdistanda |
|
91 |
7 90
|
syl5bi |
|
92 |
|
flimopn |
|
93 |
77 15 92
|
syl2anc |
|
94 |
91 93
|
sylibrd |
|
95 |
94
|
ssrdv |
|
96 |
|
sseq0 |
|
97 |
95 6 96
|
syl2anc |
|
98 |
|
ssdif0 |
|
99 |
97 98
|
sylibr |
|
100 |
|
difss |
|
101 |
100
|
unissi |
|
102 |
101 2
|
sseqtrrid |
|
103 |
99 102
|
eqssd |
|
104 |
103 100
|
jctil |
|
105 |
20
|
difexd |
|
106 |
105
|
adantr |
|
107 |
|
sseq1 |
|
108 |
|
unieq |
|
109 |
108
|
eqeq2d |
|
110 |
107 109
|
anbi12d |
|
111 |
110
|
anbi2d |
|
112 |
|
pweq |
|
113 |
112
|
ineq1d |
|
114 |
113
|
rexeqdv |
|
115 |
111 114
|
imbi12d |
|
116 |
115 4
|
vtoclg |
|
117 |
106 116
|
mpcom |
|
118 |
104 117
|
mpdan |
|
119 |
|
unieq |
|
120 |
|
uni0 |
|
121 |
119 120
|
eqtrdi |
|
122 |
121
|
neeq2d |
|
123 |
|
difssd |
|
124 |
123
|
ralrimivw |
|
125 |
|
riinn0 |
|
126 |
124 125
|
sylan |
|
127 |
17
|
ad2antrr |
|
128 |
127
|
difexd |
|
129 |
128
|
ralrimivw |
|
130 |
|
dfiin2g |
|
131 |
129 130
|
syl |
|
132 |
|
eqid |
|
133 |
132
|
rnmpt |
|
134 |
133
|
inteqi |
|
135 |
131 134
|
eqtr4di |
|
136 |
126 135
|
eqtrd |
|
137 |
15
|
ad2antrr |
|
138 |
|
elfpw |
|
139 |
138
|
simplbi |
|
140 |
139
|
ad2antlr |
|
141 |
140
|
sselda |
|
142 |
141
|
eldifbd |
|
143 |
5
|
ad3antrrr |
|
144 |
140
|
difss2d |
|
145 |
144
|
sselda |
|
146 |
|
elssuni |
|
147 |
145 146
|
syl |
|
148 |
2
|
ad3antrrr |
|
149 |
147 148
|
sseqtrrd |
|
150 |
|
ufilb |
|
151 |
143 149 150
|
syl2anc |
|
152 |
142 151
|
mpbid |
|
153 |
152
|
fmpttd |
|
154 |
153
|
frnd |
|
155 |
132 152
|
dmmptd |
|
156 |
|
simpr |
|
157 |
155 156
|
eqnetrd |
|
158 |
|
dm0rn0 |
|
159 |
158
|
necon3bii |
|
160 |
157 159
|
sylib |
|
161 |
|
elinel2 |
|
162 |
161
|
ad2antlr |
|
163 |
|
abrexfi |
|
164 |
133 163
|
eqeltrid |
|
165 |
162 164
|
syl |
|
166 |
|
filintn0 |
|
167 |
137 154 160 165 166
|
syl13anc |
|
168 |
136 167
|
eqnetrd |
|
169 |
|
disj3 |
|
170 |
169
|
necon3bii |
|
171 |
168 170
|
sylib |
|
172 |
|
iundif2 |
|
173 |
|
dfss4 |
|
174 |
149 173
|
sylib |
|
175 |
174
|
iuneq2dv |
|
176 |
|
uniiun |
|
177 |
175 176
|
eqtr4di |
|
178 |
172 177
|
eqtr3id |
|
179 |
171 178
|
neeqtrd |
|
180 |
15
|
adantr |
|
181 |
|
filtop |
|
182 |
|
fileln0 |
|
183 |
180 181 182
|
syl2anc2 |
|
184 |
122 179 183
|
pm2.61ne |
|
185 |
184
|
neneqd |
|
186 |
185
|
nrexdv |
|
187 |
118 186
|
pm2.65i |
|