Metamath Proof Explorer


Theorem alginv

Description: If I is an invariant of F , then its value is unchanged after any number of iterations of F . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses alginv.1 R = seq 0 F 1 st 0 × A
alginv.2 F : S S
alginv.3 x S I F x = I x
Assertion alginv A S K 0 I R K = I R 0

Proof

Step Hyp Ref Expression
1 alginv.1 R = seq 0 F 1 st 0 × A
2 alginv.2 F : S S
3 alginv.3 x S I F x = I x
4 2fveq3 z = 0 I R z = I R 0
5 4 eqeq1d z = 0 I R z = I R 0 I R 0 = I R 0
6 5 imbi2d z = 0 A S I R z = I R 0 A S I R 0 = I R 0
7 2fveq3 z = k I R z = I R k
8 7 eqeq1d z = k I R z = I R 0 I R k = I R 0
9 8 imbi2d z = k A S I R z = I R 0 A S I R k = I R 0
10 2fveq3 z = k + 1 I R z = I R k + 1
11 10 eqeq1d z = k + 1 I R z = I R 0 I R k + 1 = I R 0
12 11 imbi2d z = k + 1 A S I R z = I R 0 A S I R k + 1 = I R 0
13 2fveq3 z = K I R z = I R K
14 13 eqeq1d z = K I R z = I R 0 I R K = I R 0
15 14 imbi2d z = K A S I R z = I R 0 A S I R K = I R 0
16 eqidd A S I R 0 = I R 0
17 nn0uz 0 = 0
18 0zd A S 0
19 id A S A S
20 2 a1i A S F : S S
21 17 1 18 19 20 algrp1 A S k 0 R k + 1 = F R k
22 21 fveq2d A S k 0 I R k + 1 = I F R k
23 17 1 18 19 20 algrf A S R : 0 S
24 23 ffvelrnda A S k 0 R k S
25 2fveq3 x = R k I F x = I F R k
26 fveq2 x = R k I x = I R k
27 25 26 eqeq12d x = R k I F x = I x I F R k = I R k
28 27 3 vtoclga R k S I F R k = I R k
29 24 28 syl A S k 0 I F R k = I R k
30 22 29 eqtrd A S k 0 I R k + 1 = I R k
31 30 eqeq1d A S k 0 I R k + 1 = I R 0 I R k = I R 0
32 31 biimprd A S k 0 I R k = I R 0 I R k + 1 = I R 0
33 32 expcom k 0 A S I R k = I R 0 I R k + 1 = I R 0
34 33 a2d k 0 A S I R k = I R 0 A S I R k + 1 = I R 0
35 6 9 12 15 16 34 nn0ind K 0 A S I R K = I R 0
36 35 impcom A S K 0 I R K = I R 0