| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alginv.1 |
|
| 2 |
|
alginv.2 |
|
| 3 |
|
alginv.3 |
|
| 4 |
|
2fveq3 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
2fveq3 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
2fveq3 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
2fveq3 |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
eqidd |
|
| 17 |
|
nn0uz |
|
| 18 |
|
0zd |
|
| 19 |
|
id |
|
| 20 |
2
|
a1i |
|
| 21 |
17 1 18 19 20
|
algrp1 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
17 1 18 19 20
|
algrf |
|
| 24 |
23
|
ffvelcdmda |
|
| 25 |
|
2fveq3 |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
eqeq12d |
|
| 28 |
27 3
|
vtoclga |
|
| 29 |
24 28
|
syl |
|
| 30 |
22 29
|
eqtrd |
|
| 31 |
30
|
eqeq1d |
|
| 32 |
31
|
biimprd |
|
| 33 |
32
|
expcom |
|
| 34 |
33
|
a2d |
|
| 35 |
6 9 12 15 16 34
|
nn0ind |
|
| 36 |
35
|
impcom |
|