Description: An algorithm is a step function F : S --> S on a state space S . An algorithm acts on an initial state A e. S by iteratively applying F to give A , ( FA ) , ( F( FA ) ) and so on. An algorithm is said to halt if a fixed point of F is reached after a finite number of iterations.
The algorithm iterator R : NN0 --> S "runs" the algorithm F so that ( Rk ) is the state after k iterations of F on the initial state A .
Domain and codomain of the algorithm iterator R . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | algrf.1 | ||
algrf.2 | |||
algrf.3 | |||
algrf.4 | |||
algrf.5 | |||
Assertion | algrf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algrf.1 | ||
2 | algrf.2 | ||
3 | algrf.3 | ||
4 | algrf.4 | ||
5 | algrf.5 | ||
6 | fvconst2g | ||
7 | 4 6 | sylan | |
8 | 4 | adantr | |
9 | 7 8 | eqeltrd | |
10 | vex | ||
11 | vex | ||
12 | 10 11 | opco1i | |
13 | simpl | ||
14 | ffvelrn | ||
15 | 5 13 14 | syl2an | |
16 | 12 15 | eqeltrid | |
17 | 1 3 9 16 | seqf | |
18 | 2 | feq1i | |
19 | 17 18 | sylibr |