Metamath Proof Explorer


Theorem allbutfifvre

Description: Given a sequence of real-valued functions, and X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses allbutfifvre.1 m φ
allbutfifvre.2 Z = M
allbutfifvre.3 φ m Z F m : dom F m
allbutfifvre.4 D = n Z m n dom F m
allbutfifvre.5 φ X D
Assertion allbutfifvre φ n Z m n F m X

Proof

Step Hyp Ref Expression
1 allbutfifvre.1 m φ
2 allbutfifvre.2 Z = M
3 allbutfifvre.3 φ m Z F m : dom F m
4 allbutfifvre.4 D = n Z m n dom F m
5 allbutfifvre.5 φ X D
6 5 4 eleqtrdi φ X n Z m n dom F m
7 eqid n Z m n dom F m = n Z m n dom F m
8 2 7 allbutfi X n Z m n dom F m n Z m n X dom F m
9 6 8 sylib φ n Z m n X dom F m
10 nfv m n Z
11 1 10 nfan m φ n Z
12 simpll φ n Z m n φ
13 2 uztrn2 n Z j n j Z
14 13 ssd n Z n Z
15 14 sselda n Z m n m Z
16 15 adantll φ n Z m n m Z
17 3 ffvelrnda φ m Z X dom F m F m X
18 17 ex φ m Z X dom F m F m X
19 12 16 18 syl2anc φ n Z m n X dom F m F m X
20 11 19 ralimdaa φ n Z m n X dom F m m n F m X
21 20 reximdva φ n Z m n X dom F m n Z m n F m X
22 9 21 mpd φ n Z m n F m X