Metamath Proof Explorer


Theorem alral

Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006)

Ref Expression
Assertion alral x φ x A φ

Proof

Step Hyp Ref Expression
1 ala1 x φ x x A φ
2 df-ral x A φ x x A φ
3 1 2 sylibr x φ x A φ