Metamath Proof Explorer


Theorem alrim3con13v

Description: Closed form of alrimi with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion alrim3con13v φ x φ ψ φ χ x ψ φ χ

Proof

Step Hyp Ref Expression
1 simp1 ψ φ χ ψ
2 1 a1i φ x φ ψ φ χ ψ
3 ax-5 ψ x ψ
4 2 3 syl6 φ x φ ψ φ χ x ψ
5 simp2 ψ φ χ φ
6 5 imim1i φ x φ ψ φ χ x φ
7 simp3 ψ φ χ χ
8 7 a1i φ x φ ψ φ χ χ
9 ax-5 χ x χ
10 8 9 syl6 φ x φ ψ φ χ x χ
11 4 6 10 3jcad φ x φ ψ φ χ x ψ x φ x χ
12 19.26-3an x ψ φ χ x ψ x φ x χ
13 11 12 syl6ibr φ x φ ψ φ χ x ψ φ χ