Metamath Proof Explorer


Theorem alrot3

Description: Theorem *11.21 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion alrot3 x y z φ y z x φ

Proof

Step Hyp Ref Expression
1 alcom x y z φ y x z φ
2 alcom x z φ z x φ
3 2 albii y x z φ y z x φ
4 1 3 bitri x y z φ y z x φ