Metamath Proof Explorer


Theorem alzdvds

Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion alzdvds N x x N N = 0

Proof

Step Hyp Ref Expression
1 nnssz
2 zcn N N
3 2 abscld N N
4 arch N x N < x
5 3 4 syl N x N < x
6 ssrexv x N < x x N < x
7 1 5 6 mpsyl N x N < x
8 zre x x
9 ltnle N x N < x ¬ x N
10 3 8 9 syl2an N x N < x ¬ x N
11 10 rexbidva N x N < x x ¬ x N
12 rexnal x ¬ x N ¬ x x N
13 11 12 bitrdi N x N < x ¬ x x N
14 7 13 mpbid N ¬ x x N
15 14 adantl x x N N ¬ x x N
16 ralim x x N x N x x N x x N
17 dvdsleabs x N N 0 x N x N
18 17 3expb x N N 0 x N x N
19 18 expcom N N 0 x x N x N
20 19 ralrimiv N N 0 x x N x N
21 16 20 syl11 x x N N N 0 x x N
22 21 expdimp x x N N N 0 x x N
23 15 22 mtod x x N N ¬ N 0
24 nne ¬ N 0 N = 0
25 23 24 sylib x x N N N = 0
26 25 expcom N x x N N = 0
27 dvds0 x x 0
28 breq2 N = 0 x N x 0
29 27 28 syl5ibr N = 0 x x N
30 29 ralrimiv N = 0 x x N
31 26 30 impbid1 N x x N N = 0