Metamath Proof Explorer


Theorem amgm2

Description: Arithmetic-geometric mean inequality for n = 2 . (Contributed by Mario Carneiro, 2-Jul-2014) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion amgm2 A 0 A B 0 B A B A + B 2

Proof

Step Hyp Ref Expression
1 2cn 2
2 simpll A 0 A B 0 B A
3 simprl A 0 A B 0 B B
4 remulcl A B A B
5 2 3 4 syl2anc A 0 A B 0 B A B
6 mulge0 A 0 A B 0 B 0 A B
7 resqrtcl A B 0 A B A B
8 5 6 7 syl2anc A 0 A B 0 B A B
9 8 recnd A 0 A B 0 B A B
10 sqmul 2 A B 2 A B 2 = 2 2 A B 2
11 1 9 10 sylancr A 0 A B 0 B 2 A B 2 = 2 2 A B 2
12 sq2 2 2 = 4
13 12 oveq1i 2 2 A B 2 = 4 A B 2
14 5 recnd A 0 A B 0 B A B
15 sqrtth A B A B 2 = A B
16 14 15 syl A 0 A B 0 B A B 2 = A B
17 16 oveq2d A 0 A B 0 B 4 A B 2 = 4 A B
18 13 17 eqtrid A 0 A B 0 B 2 2 A B 2 = 4 A B
19 11 18 eqtrd A 0 A B 0 B 2 A B 2 = 4 A B
20 2 3 resubcld A 0 A B 0 B A B
21 20 sqge0d A 0 A B 0 B 0 A B 2
22 2 recnd A 0 A B 0 B A
23 3 recnd A 0 A B 0 B B
24 binom2 A B A + B 2 = A 2 + 2 A B + B 2
25 22 23 24 syl2anc A 0 A B 0 B A + B 2 = A 2 + 2 A B + B 2
26 binom2sub A B A B 2 = A 2 - 2 A B + B 2
27 22 23 26 syl2anc A 0 A B 0 B A B 2 = A 2 - 2 A B + B 2
28 25 27 oveq12d A 0 A B 0 B A + B 2 A B 2 = A 2 + 2 A B + B 2 - A 2 - 2 A B + B 2
29 2 resqcld A 0 A B 0 B A 2
30 2re 2
31 remulcl 2 A B 2 A B
32 30 5 31 sylancr A 0 A B 0 B 2 A B
33 29 32 readdcld A 0 A B 0 B A 2 + 2 A B
34 33 recnd A 0 A B 0 B A 2 + 2 A B
35 29 32 resubcld A 0 A B 0 B A 2 2 A B
36 35 recnd A 0 A B 0 B A 2 2 A B
37 3 resqcld A 0 A B 0 B B 2
38 37 recnd A 0 A B 0 B B 2
39 34 36 38 pnpcan2d A 0 A B 0 B A 2 + 2 A B + B 2 - A 2 - 2 A B + B 2 = A 2 + 2 A B - A 2 2 A B
40 32 recnd A 0 A B 0 B 2 A B
41 40 2timesd A 0 A B 0 B 2 2 A B = 2 A B + 2 A B
42 2t2e4 2 2 = 4
43 42 oveq1i 2 2 A B = 4 A B
44 2cnd A 0 A B 0 B 2
45 44 44 14 mulassd A 0 A B 0 B 2 2 A B = 2 2 A B
46 43 45 eqtr3id A 0 A B 0 B 4 A B = 2 2 A B
47 29 recnd A 0 A B 0 B A 2
48 47 40 40 pnncand A 0 A B 0 B A 2 + 2 A B - A 2 2 A B = 2 A B + 2 A B
49 41 46 48 3eqtr4rd A 0 A B 0 B A 2 + 2 A B - A 2 2 A B = 4 A B
50 28 39 49 3eqtrd A 0 A B 0 B A + B 2 A B 2 = 4 A B
51 2 3 readdcld A 0 A B 0 B A + B
52 51 resqcld A 0 A B 0 B A + B 2
53 52 recnd A 0 A B 0 B A + B 2
54 20 resqcld A 0 A B 0 B A B 2
55 54 recnd A 0 A B 0 B A B 2
56 4re 4
57 remulcl 4 A B 4 A B
58 56 5 57 sylancr A 0 A B 0 B 4 A B
59 58 recnd A 0 A B 0 B 4 A B
60 subsub23 A + B 2 A B 2 4 A B A + B 2 A B 2 = 4 A B A + B 2 4 A B = A B 2
61 53 55 59 60 syl3anc A 0 A B 0 B A + B 2 A B 2 = 4 A B A + B 2 4 A B = A B 2
62 50 61 mpbid A 0 A B 0 B A + B 2 4 A B = A B 2
63 21 62 breqtrrd A 0 A B 0 B 0 A + B 2 4 A B
64 52 58 subge0d A 0 A B 0 B 0 A + B 2 4 A B 4 A B A + B 2
65 63 64 mpbid A 0 A B 0 B 4 A B A + B 2
66 19 65 eqbrtrd A 0 A B 0 B 2 A B 2 A + B 2
67 remulcl 2 A B 2 A B
68 30 8 67 sylancr A 0 A B 0 B 2 A B
69 sqrtge0 A B 0 A B 0 A B
70 5 6 69 syl2anc A 0 A B 0 B 0 A B
71 0le2 0 2
72 mulge0 2 0 2 A B 0 A B 0 2 A B
73 30 71 72 mpanl12 A B 0 A B 0 2 A B
74 8 70 73 syl2anc A 0 A B 0 B 0 2 A B
75 addge0 A B 0 A 0 B 0 A + B
76 75 an4s A 0 A B 0 B 0 A + B
77 68 51 74 76 le2sqd A 0 A B 0 B 2 A B A + B 2 A B 2 A + B 2
78 66 77 mpbird A 0 A B 0 B 2 A B A + B
79 2rp 2 +
80 79 a1i A 0 A B 0 B 2 +
81 8 51 80 lemuldiv2d A 0 A B 0 B 2 A B A + B A B A + B 2
82 78 81 mpbid A 0 A B 0 B A B A + B 2