Metamath Proof Explorer


Theorem amgmlem

Description: Lemma for amgm . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses amgm.1 M = mulGrp fld
amgm.2 φ A Fin
amgm.3 φ A
amgm.4 φ F : A +
Assertion amgmlem φ M F 1 A fld F A

Proof

Step Hyp Ref Expression
1 amgm.1 M = mulGrp fld
2 amgm.2 φ A Fin
3 amgm.3 φ A
4 amgm.4 φ F : A +
5 cnfld0 0 = 0 fld
6 cnring fld Ring
7 ringabl fld Ring fld Abel
8 6 7 mp1i φ fld Abel
9 resubdrg SubRing fld fld DivRing
10 9 simpli SubRing fld
11 subrgsubg SubRing fld SubGrp fld
12 10 11 mp1i φ SubGrp fld
13 4 ffvelrnda φ k A F k +
14 13 relogcld φ k A log F k
15 14 renegcld φ k A log F k
16 15 fmpttd φ k A log F k : A
17 c0ex 0 V
18 17 a1i φ 0 V
19 16 2 18 fdmfifsupp φ finSupp 0 k A log F k
20 5 8 2 12 16 19 gsumsubgcl φ fld k A log F k
21 20 recnd φ fld k A log F k
22 hashnncl A Fin A A
23 2 22 syl φ A A
24 3 23 mpbird φ A
25 24 nncnd φ A
26 24 nnne0d φ A 0
27 21 25 26 divnegd φ fld k A log F k A = fld k A log F k A
28 14 recnd φ k A log F k
29 2 28 gsumfsum φ fld k A log F k = k A log F k
30 28 negnegd φ k A log F k = log F k
31 30 sumeq2dv φ k A log F k = k A log F k
32 15 recnd φ k A log F k
33 2 32 fsumneg φ k A log F k = k A log F k
34 29 31 33 3eqtr2rd φ k A log F k = fld k A log F k
35 2 32 gsumfsum φ fld k A log F k = k A log F k
36 35 negeqd φ fld k A log F k = k A log F k
37 4 feqmptd φ F = k A F k
38 relogf1o log + : + 1-1 onto
39 f1of log + : + 1-1 onto log + : +
40 38 39 mp1i φ log + : +
41 40 feqmptd φ log + = x + log + x
42 fvres x + log + x = log x
43 42 mpteq2ia x + log + x = x + log x
44 41 43 eqtrdi φ log + = x + log x
45 fveq2 x = F k log x = log F k
46 13 37 44 45 fmptco φ log + F = k A log F k
47 46 oveq2d φ fld log + F = fld k A log F k
48 34 36 47 3eqtr4d φ fld k A log F k = fld log + F
49 1 oveq1i M 𝑠 0 = mulGrp fld 𝑠 0
50 49 rpmsubg + SubGrp M 𝑠 0
51 subgsubm + SubGrp M 𝑠 0 + SubMnd M 𝑠 0
52 50 51 ax-mp + SubMnd M 𝑠 0
53 cnfldbas = Base fld
54 cndrng fld DivRing
55 53 5 54 drngui 0 = Unit fld
56 55 1 unitsubm fld Ring 0 SubMnd M
57 eqid M 𝑠 0 = M 𝑠 0
58 57 subsubm 0 SubMnd M + SubMnd M 𝑠 0 + SubMnd M + 0
59 6 56 58 mp2b + SubMnd M 𝑠 0 + SubMnd M + 0
60 52 59 mpbi + SubMnd M + 0
61 60 simpli + SubMnd M
62 eqid M 𝑠 + = M 𝑠 +
63 62 submbas + SubMnd M + = Base M 𝑠 +
64 61 63 ax-mp + = Base M 𝑠 +
65 cnfld1 1 = 1 fld
66 1 65 ringidval 1 = 0 M
67 62 66 subm0 + SubMnd M 1 = 0 M 𝑠 +
68 61 67 ax-mp 1 = 0 M 𝑠 +
69 cncrng fld CRing
70 1 crngmgp fld CRing M CMnd
71 69 70 mp1i φ M CMnd
72 62 submmnd + SubMnd M M 𝑠 + Mnd
73 61 72 mp1i φ M 𝑠 + Mnd
74 62 subcmn M CMnd M 𝑠 + Mnd M 𝑠 + CMnd
75 71 73 74 syl2anc φ M 𝑠 + CMnd
76 df-refld fld = fld 𝑠
77 76 subrgring SubRing fld fld Ring
78 10 77 ax-mp fld Ring
79 ringmnd fld Ring fld Mnd
80 78 79 mp1i φ fld Mnd
81 1 oveq1i M 𝑠 + = mulGrp fld 𝑠 +
82 81 reloggim log + M 𝑠 + GrpIso fld
83 gimghm log + M 𝑠 + GrpIso fld log + M 𝑠 + GrpHom fld
84 82 83 ax-mp log + M 𝑠 + GrpHom fld
85 ghmmhm log + M 𝑠 + GrpHom fld log + M 𝑠 + MndHom fld
86 84 85 mp1i φ log + M 𝑠 + MndHom fld
87 1ex 1 V
88 87 a1i φ 1 V
89 4 2 88 fdmfifsupp φ finSupp 1 F
90 64 68 75 80 2 86 4 89 gsummhm φ fld log + F = log + M 𝑠 + F
91 subgsubm SubGrp fld SubMnd fld
92 12 91 syl φ SubMnd fld
93 fco log + : + F : A + log + F : A
94 40 4 93 syl2anc φ log + F : A
95 2 92 94 76 gsumsubm φ fld log + F = fld log + F
96 61 a1i φ + SubMnd M
97 2 96 4 62 gsumsubm φ M F = M 𝑠 + F
98 97 fveq2d φ log + M F = log + M 𝑠 + F
99 90 95 98 3eqtr4d φ fld log + F = log + M F
100 66 71 2 96 4 89 gsumsubmcl φ M F +
101 100 fvresd φ log + M F = log M F
102 48 99 101 3eqtrd φ fld k A log F k = log M F
103 102 oveq1d φ fld k A log F k A = log M F A
104 100 relogcld φ log M F
105 104 recnd φ log M F
106 105 25 26 divrec2d φ log M F A = 1 A log M F
107 27 103 106 3eqtrd φ fld k A log F k A = 1 A log M F
108 37 oveq2d φ fld F = fld k A F k
109 13 rpcnd φ k A F k
110 2 109 gsumfsum φ fld k A F k = k A F k
111 108 110 eqtrd φ fld F = k A F k
112 2 3 13 fsumrpcl φ k A F k +
113 111 112 eqeltrd φ fld F +
114 24 nnrpd φ A +
115 113 114 rpdivcld φ fld F A +
116 115 relogcld φ log fld F A
117 20 24 nndivred φ fld k A log F k A
118 rpssre +
119 118 a1i φ +
120 relogcl w + log w
121 120 adantl φ w + log w
122 121 renegcld φ w + log w
123 122 fmpttd φ w + log w : +
124 ioorp 0 +∞ = +
125 124 eleq2i a 0 +∞ a +
126 124 eleq2i b 0 +∞ b +
127 iccssioo2 a 0 +∞ b 0 +∞ a b 0 +∞
128 125 126 127 syl2anbr a + b + a b 0 +∞
129 128 124 sseqtrdi a + b + a b +
130 129 adantl φ a + b + a b +
131 24 nnrecred φ 1 A
132 114 rpreccld φ 1 A +
133 132 rpge0d φ 0 1 A
134 elrege0 1 A 0 +∞ 1 A 0 1 A
135 131 133 134 sylanbrc φ 1 A 0 +∞
136 fconst6g 1 A 0 +∞ A × 1 A : A 0 +∞
137 135 136 syl φ A × 1 A : A 0 +∞
138 0lt1 0 < 1
139 fconstmpt A × 1 A = k A 1 A
140 139 oveq2i fld A × 1 A = fld k A 1 A
141 ringmnd fld Ring fld Mnd
142 6 141 mp1i φ fld Mnd
143 131 recnd φ 1 A
144 eqid fld = fld
145 53 144 gsumconst fld Mnd A Fin 1 A fld k A 1 A = A fld 1 A
146 142 2 143 145 syl3anc φ fld k A 1 A = A fld 1 A
147 24 nnzd φ A
148 cnfldmulg A 1 A A fld 1 A = A 1 A
149 147 143 148 syl2anc φ A fld 1 A = A 1 A
150 25 26 recidd φ A 1 A = 1
151 146 149 150 3eqtrd φ fld k A 1 A = 1
152 140 151 syl5eq φ fld A × 1 A = 1
153 138 152 breqtrrid φ 0 < fld A × 1 A
154 logccv x + y + x < y t 0 1 t log x + 1 t log y < log t x + 1 t y
155 154 3adant1 φ x + y + x < y t 0 1 t log x + 1 t log y < log t x + 1 t y
156 ioossre 0 1
157 simp3 φ x + y + x < y t 0 1 t 0 1
158 156 157 sselid φ x + y + x < y t 0 1 t
159 simp21 φ x + y + x < y t 0 1 x +
160 159 relogcld φ x + y + x < y t 0 1 log x
161 158 160 remulcld φ x + y + x < y t 0 1 t log x
162 1re 1
163 resubcl 1 t 1 t
164 162 158 163 sylancr φ x + y + x < y t 0 1 1 t
165 simp22 φ x + y + x < y t 0 1 y +
166 165 relogcld φ x + y + x < y t 0 1 log y
167 164 166 remulcld φ x + y + x < y t 0 1 1 t log y
168 161 167 readdcld φ x + y + x < y t 0 1 t log x + 1 t log y
169 simp1 φ x + y + x < y t 0 1 φ
170 ioossicc 0 1 0 1
171 170 157 sselid φ x + y + x < y t 0 1 t 0 1
172 119 130 cvxcl φ x + y + t 0 1 t x + 1 t y +
173 169 159 165 171 172 syl13anc φ x + y + x < y t 0 1 t x + 1 t y +
174 173 relogcld φ x + y + x < y t 0 1 log t x + 1 t y
175 168 174 ltnegd φ x + y + x < y t 0 1 t log x + 1 t log y < log t x + 1 t y log t x + 1 t y < t log x + 1 t log y
176 155 175 mpbid φ x + y + x < y t 0 1 log t x + 1 t y < t log x + 1 t log y
177 fveq2 w = t x + 1 t y log w = log t x + 1 t y
178 177 negeqd w = t x + 1 t y log w = log t x + 1 t y
179 eqid w + log w = w + log w
180 negex log t x + 1 t y V
181 178 179 180 fvmpt t x + 1 t y + w + log w t x + 1 t y = log t x + 1 t y
182 173 181 syl φ x + y + x < y t 0 1 w + log w t x + 1 t y = log t x + 1 t y
183 fveq2 w = x log w = log x
184 183 negeqd w = x log w = log x
185 negex log x V
186 184 179 185 fvmpt x + w + log w x = log x
187 159 186 syl φ x + y + x < y t 0 1 w + log w x = log x
188 187 oveq2d φ x + y + x < y t 0 1 t w + log w x = t log x
189 158 recnd φ x + y + x < y t 0 1 t
190 160 recnd φ x + y + x < y t 0 1 log x
191 189 190 mulneg2d φ x + y + x < y t 0 1 t log x = t log x
192 188 191 eqtrd φ x + y + x < y t 0 1 t w + log w x = t log x
193 fveq2 w = y log w = log y
194 193 negeqd w = y log w = log y
195 negex log y V
196 194 179 195 fvmpt y + w + log w y = log y
197 165 196 syl φ x + y + x < y t 0 1 w + log w y = log y
198 197 oveq2d φ x + y + x < y t 0 1 1 t w + log w y = 1 t log y
199 164 recnd φ x + y + x < y t 0 1 1 t
200 166 recnd φ x + y + x < y t 0 1 log y
201 199 200 mulneg2d φ x + y + x < y t 0 1 1 t log y = 1 t log y
202 198 201 eqtrd φ x + y + x < y t 0 1 1 t w + log w y = 1 t log y
203 192 202 oveq12d φ x + y + x < y t 0 1 t w + log w x + 1 t w + log w y = - t log x + 1 t log y
204 161 recnd φ x + y + x < y t 0 1 t log x
205 167 recnd φ x + y + x < y t 0 1 1 t log y
206 204 205 negdid φ x + y + x < y t 0 1 t log x + 1 t log y = - t log x + 1 t log y
207 203 206 eqtr4d φ x + y + x < y t 0 1 t w + log w x + 1 t w + log w y = t log x + 1 t log y
208 176 182 207 3brtr4d φ x + y + x < y t 0 1 w + log w t x + 1 t y < t w + log w x + 1 t w + log w y
209 119 123 130 208 scvxcvx φ u + v + s 0 1 w + log w s u + 1 s v s w + log w u + 1 s w + log w v
210 119 123 130 2 137 4 153 209 jensen φ fld A × 1 A × f F fld A × 1 A + w + log w fld A × 1 A × f F fld A × 1 A fld A × 1 A × f w + log w F fld A × 1 A
211 210 simprd φ w + log w fld A × 1 A × f F fld A × 1 A fld A × 1 A × f w + log w F fld A × 1 A
212 131 adantr φ k A 1 A
213 139 a1i φ A × 1 A = k A 1 A
214 2 212 13 213 37 offval2 φ A × 1 A × f F = k A 1 A F k
215 214 oveq2d φ fld A × 1 A × f F = fld k A 1 A F k
216 cnfldadd + = + fld
217 cnfldmul × = fld
218 6 a1i φ fld Ring
219 109 fmpttd φ k A F k : A
220 219 2 18 fdmfifsupp φ finSupp 0 k A F k
221 53 5 216 217 218 2 143 109 220 gsummulc2 φ fld k A 1 A F k = 1 A fld k A F k
222 fss F : A + + F : A
223 4 118 222 sylancl φ F : A
224 4 2 18 fdmfifsupp φ finSupp 0 F
225 5 8 2 12 223 224 gsumsubgcl φ fld F
226 225 recnd φ fld F
227 226 25 26 divrec2d φ fld F A = 1 A fld F
228 108 oveq2d φ 1 A fld F = 1 A fld k A F k
229 227 228 eqtr2d φ 1 A fld k A F k = fld F A
230 215 221 229 3eqtrd φ fld A × 1 A × f F = fld F A
231 230 152 oveq12d φ fld A × 1 A × f F fld A × 1 A = fld F A 1
232 225 24 nndivred φ fld F A
233 232 recnd φ fld F A
234 233 div1d φ fld F A 1 = fld F A
235 231 234 eqtrd φ fld A × 1 A × f F fld A × 1 A = fld F A
236 235 fveq2d φ w + log w fld A × 1 A × f F fld A × 1 A = w + log w fld F A
237 fveq2 w = fld F A log w = log fld F A
238 237 negeqd w = fld F A log w = log fld F A
239 negex log fld F A V
240 238 179 239 fvmpt fld F A + w + log w fld F A = log fld F A
241 115 240 syl φ w + log w fld F A = log fld F A
242 236 241 eqtrd φ w + log w fld A × 1 A × f F fld A × 1 A = log fld F A
243 53 5 216 217 218 2 143 32 19 gsummulc2 φ fld k A 1 A log F k = 1 A fld k A log F k
244 negex log F k V
245 244 a1i φ k A log F k V
246 eqidd φ w + log w = w + log w
247 fveq2 w = F k log w = log F k
248 247 negeqd w = F k log w = log F k
249 13 37 246 248 fmptco φ w + log w F = k A log F k
250 2 212 245 213 249 offval2 φ A × 1 A × f w + log w F = k A 1 A log F k
251 250 oveq2d φ fld A × 1 A × f w + log w F = fld k A 1 A log F k
252 21 25 26 divrec2d φ fld k A log F k A = 1 A fld k A log F k
253 243 251 252 3eqtr4d φ fld A × 1 A × f w + log w F = fld k A log F k A
254 253 152 oveq12d φ fld A × 1 A × f w + log w F fld A × 1 A = fld k A log F k A 1
255 117 recnd φ fld k A log F k A
256 255 div1d φ fld k A log F k A 1 = fld k A log F k A
257 254 256 eqtrd φ fld A × 1 A × f w + log w F fld A × 1 A = fld k A log F k A
258 211 242 257 3brtr3d φ log fld F A fld k A log F k A
259 116 117 258 lenegcon1d φ fld k A log F k A log fld F A
260 107 259 eqbrtrrd φ 1 A log M F log fld F A
261 131 104 remulcld φ 1 A log M F
262 efle 1 A log M F log fld F A 1 A log M F log fld F A e 1 A log M F e log fld F A
263 261 116 262 syl2anc φ 1 A log M F log fld F A e 1 A log M F e log fld F A
264 260 263 mpbid φ e 1 A log M F e log fld F A
265 100 rpcnd φ M F
266 100 rpne0d φ M F 0
267 265 266 143 cxpefd φ M F 1 A = e 1 A log M F
268 115 reeflogd φ e log fld F A = fld F A
269 268 eqcomd φ fld F A = e log fld F A
270 264 267 269 3brtr4d φ M F 1 A fld F A