Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
an6
Next ⟩
3an6
Metamath Proof Explorer
Ascii
Unicode
Theorem
an6
Description:
Rearrangement of 6 conjuncts.
(Contributed by
NM
, 13-Mar-1995)
Ref
Expression
Assertion
an6
⊢
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
↔
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η
Proof
Step
Hyp
Ref
Expression
1
an4
⊢
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
↔
φ
∧
ψ
∧
θ
∧
τ
∧
χ
∧
η
2
an4
⊢
φ
∧
ψ
∧
θ
∧
τ
↔
φ
∧
θ
∧
ψ
∧
τ
3
2
anbi1i
⊢
φ
∧
ψ
∧
θ
∧
τ
∧
χ
∧
η
↔
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η
4
1
3
bitri
⊢
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
↔
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η
5
df-3an
⊢
φ
∧
ψ
∧
χ
↔
φ
∧
ψ
∧
χ
6
df-3an
⊢
θ
∧
τ
∧
η
↔
θ
∧
τ
∧
η
7
5
6
anbi12i
⊢
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
↔
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
8
df-3an
⊢
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η
↔
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η
9
4
7
8
3bitr4i
⊢
φ
∧
ψ
∧
χ
∧
θ
∧
τ
∧
η
↔
φ
∧
θ
∧
ψ
∧
τ
∧
χ
∧
η