Metamath Proof Explorer


Theorem anbiim

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024) (Proof shortened by Wolf Lammen, 7-May-2025)

Ref Expression
Hypotheses anbiim.1 φ χ θ
anbiim.2 ψ θ χ
Assertion anbiim φ ψ χ θ

Proof

Step Hyp Ref Expression
1 anbiim.1 φ χ θ
2 anbiim.2 ψ θ χ
3 1 adantr φ ψ χ θ
4 2 adantl φ ψ θ χ
5 3 4 impbid φ ψ χ θ