Metamath Proof Explorer


Theorem anc2l

Description: Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 14-Jul-2013)

Ref Expression
Assertion anc2l φ ψ χ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 pm5.42 φ ψ χ φ ψ φ χ
2 1 biimpi φ ψ χ φ ψ φ χ