Metamath Proof Explorer


Theorem anc2li

Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 7-Dec-2012)

Ref Expression
Hypothesis anc2li.1 φ ψ χ
Assertion anc2li φ ψ φ χ

Proof

Step Hyp Ref Expression
1 anc2li.1 φ ψ χ
2 id φ φ
3 1 2 jctild φ ψ φ χ