Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Anthony Hart
Propositional Calculus
andnand1
Next ⟩
imnand2
Metamath Proof Explorer
Ascii
Unicode
Theorem
andnand1
Description:
Double and in terms of double nand.
(Contributed by
Anthony Hart
, 2-Sep-2011)
Ref
Expression
Assertion
andnand1
⊢
φ
∧
ψ
∧
χ
↔
φ
⊼
ψ
⊼
χ
⊼
φ
⊼
ψ
⊼
χ
Proof
Step
Hyp
Ref
Expression
1
3anass
⊢
φ
∧
ψ
∧
χ
↔
φ
∧
ψ
∧
χ
2
pm4.63
⊢
¬
ψ
→
¬
χ
↔
ψ
∧
χ
3
2
anbi2i
⊢
φ
∧
¬
ψ
→
¬
χ
↔
φ
∧
ψ
∧
χ
4
annim
⊢
φ
∧
¬
ψ
→
¬
χ
↔
¬
φ
→
ψ
→
¬
χ
5
1
3
4
3bitr2i
⊢
φ
∧
ψ
∧
χ
↔
¬
φ
→
ψ
→
¬
χ
6
df-3nand
⊢
φ
⊼
ψ
⊼
χ
↔
φ
→
ψ
→
¬
χ
7
6
notbii
⊢
¬
φ
⊼
ψ
⊼
χ
↔
¬
φ
→
ψ
→
¬
χ
8
nannot
⊢
¬
φ
⊼
ψ
⊼
χ
↔
φ
⊼
ψ
⊼
χ
⊼
φ
⊼
ψ
⊼
χ
9
5
7
8
3bitr2i
⊢
φ
∧
ψ
∧
χ
↔
φ
⊼
ψ
⊼
χ
⊼
φ
⊼
ψ
⊼
χ