Metamath Proof Explorer


Theorem andnand1

Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion andnand1 φ ψ χ φ ψ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 3anass φ ψ χ φ ψ χ
2 pm4.63 ¬ ψ ¬ χ ψ χ
3 2 anbi2i φ ¬ ψ ¬ χ φ ψ χ
4 annim φ ¬ ψ ¬ χ ¬ φ ψ ¬ χ
5 1 3 4 3bitr2i φ ψ χ ¬ φ ψ ¬ χ
6 df-3nand φ ψ χ φ ψ ¬ χ
7 6 notbii ¬ φ ψ χ ¬ φ ψ ¬ χ
8 nannot ¬ φ ψ χ φ ψ χ φ ψ χ
9 5 7 8 3bitr2i φ ψ χ φ ψ χ φ ψ χ