Metamath Proof Explorer


Theorem ang180

Description: The sum of angles m A B C + m B C A + m C A B in a triangle adds up to either _pi or -u _pi , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F = x 0 , y 0 log y x
Assertion ang180 A B C A B B C A C C B F A B + A C F B C + B A F C A π π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 simpl3 A B C A B B C A C C
3 simpl2 A B C A B B C A C B
4 2 3 subcld A B C A B B C A C C B
5 simpr2 A B C A B B C A C B C
6 5 necomd A B C A B B C A C C B
7 2 3 6 subne0d A B C A B B C A C C B 0
8 simpl1 A B C A B B C A C A
9 8 3 subcld A B C A B B C A C A B
10 simpr1 A B C A B B C A C A B
11 8 3 10 subne0d A B C A B B C A C A B 0
12 1 angneg C B C B 0 A B A B 0 C B F A B = C B F A B
13 4 7 9 11 12 syl22anc A B C A B B C A C C B F A B = C B F A B
14 2 3 negsubdi2d A B C A B B C A C C B = B C
15 3 2 8 nnncan2d A B C A B B C A C B - A - C A = B C
16 14 15 eqtr4d A B C A B B C A C C B = B - A - C A
17 8 3 negsubdi2d A B C A B B C A C A B = B A
18 16 17 oveq12d A B C A B B C A C C B F A B = B - A - C A F B A
19 13 18 eqtr3d A B C A B B C A C C B F A B = B - A - C A F B A
20 8 2 subcld A B C A B B C A C A C
21 simpr3 A B C A B B C A C A C
22 8 2 21 subne0d A B C A B B C A C A C 0
23 3 2 subcld A B C A B B C A C B C
24 3 2 5 subne0d A B C A B B C A C B C 0
25 1 angneg A C A C 0 B C B C 0 A C F B C = A C F B C
26 20 22 23 24 25 syl22anc A B C A B B C A C A C F B C = A C F B C
27 8 2 negsubdi2d A B C A B B C A C A C = C A
28 3 2 negsubdi2d A B C A B B C A C B C = C B
29 2 3 8 nnncan2d A B C A B B C A C C - A - B A = C B
30 28 29 eqtr4d A B C A B B C A C B C = C - A - B A
31 27 30 oveq12d A B C A B B C A C A C F B C = C A F C - A - B A
32 26 31 eqtr3d A B C A B B C A C A C F B C = C A F C - A - B A
33 19 32 oveq12d A B C A B B C A C C B F A B + A C F B C = B - A - C A F B A + C A F C - A - B A
34 33 oveq1d A B C A B B C A C C B F A B + A C F B C + B A F C A = B - A - C A F B A + C A F C - A - B A + B A F C A
35 3 8 subcld A B C A B B C A C B A
36 10 necomd A B C A B B C A C B A
37 3 8 36 subne0d A B C A B B C A C B A 0
38 2 8 subcld A B C A B B C A C C A
39 21 necomd A B C A B B C A C C A
40 2 8 39 subne0d A B C A B B C A C C A 0
41 3 2 8 5 subneintr2d A B C A B B C A C B A C A
42 1 ang180lem5 B A B A 0 C A C A 0 B A C A B - A - C A F B A + C A F C - A - B A + B A F C A π π
43 35 37 38 40 41 42 syl221anc A B C A B B C A C B - A - C A F B A + C A F C - A - B A + B A F C A π π
44 34 43 eqeltrd A B C A B B C A C C B F A B + A C F B C + B A F C A π π