Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|
2 |
|
simpl3 |
|
3 |
|
simpl2 |
|
4 |
2 3
|
subcld |
|
5 |
|
simpr2 |
|
6 |
5
|
necomd |
|
7 |
2 3 6
|
subne0d |
|
8 |
|
simpl1 |
|
9 |
8 3
|
subcld |
|
10 |
|
simpr1 |
|
11 |
8 3 10
|
subne0d |
|
12 |
1
|
angneg |
|
13 |
4 7 9 11 12
|
syl22anc |
|
14 |
2 3
|
negsubdi2d |
|
15 |
3 2 8
|
nnncan2d |
|
16 |
14 15
|
eqtr4d |
|
17 |
8 3
|
negsubdi2d |
|
18 |
16 17
|
oveq12d |
|
19 |
13 18
|
eqtr3d |
|
20 |
8 2
|
subcld |
|
21 |
|
simpr3 |
|
22 |
8 2 21
|
subne0d |
|
23 |
3 2
|
subcld |
|
24 |
3 2 5
|
subne0d |
|
25 |
1
|
angneg |
|
26 |
20 22 23 24 25
|
syl22anc |
|
27 |
8 2
|
negsubdi2d |
|
28 |
3 2
|
negsubdi2d |
|
29 |
2 3 8
|
nnncan2d |
|
30 |
28 29
|
eqtr4d |
|
31 |
27 30
|
oveq12d |
|
32 |
26 31
|
eqtr3d |
|
33 |
19 32
|
oveq12d |
|
34 |
33
|
oveq1d |
|
35 |
3 8
|
subcld |
|
36 |
10
|
necomd |
|
37 |
3 8 36
|
subne0d |
|
38 |
2 8
|
subcld |
|
39 |
21
|
necomd |
|
40 |
2 8 39
|
subne0d |
|
41 |
3 2 8 5
|
subneintr2d |
|
42 |
1
|
ang180lem5 |
|
43 |
35 37 38 40 41 42
|
syl221anc |
|
44 |
34 43
|
eqeltrd |
|